
Programmable Cryptography:

Four Easy Pieces

Edited by Evan Chen, Brian Lawrence, Yan X Zhang

February 11, 2025

1

Contents

1 Introduction 5
1.1 What is programmable cryptography? 5
1.2 Ideas in programmable cryptography 6

1.2.1 2PC: two-party computation 6
1.2.2 SNARKs: proofs of general statements 6
1.2.3 FHE: fully homomorphic encryption 6
1.2.4 ORAM: Oblivious RAM 7

1.3 Programmable cryptography in the world 7

2 Two-Party Computation 9
2.1 Garbled circuits . 9

2.1.1 The problem . 9
2.1.2 Outline of solution . 9
2.1.3 Garbled gates . 10
2.1.4 Chaining garbled gates . 11
2.1.5 How Bob uses one gate 12
2.1.6 How the circuit ends . 12
2.1.7 How the circuit starts . 12

2.2 Oblivious transfer . 13
2.2.1 Commutative encryption 13
2.2.2 OT using commutative encryption 14
2.2.3 OT in one step . 14

2.3 2PC takeaways . 15

3 SNARKs Prelude: Elliptic Curves and Polynomial Commit-
ments 16
3.1 Elliptic curves . 16
3.2 Discrete logarithm . 20

3.2.1 Curves other than BN254 21
3.2.2 Example application: EdDSA signature scheme 22
3.2.3 Example application: Pedersen commitments 23

3.3 Bilinear pairings on elliptic curves 24
3.3.1 Verifying more complicated claims 25
3.3.2 So which curves are pairing-friendly? 25

3.4 KZG commitments . 26
3.4.1 The setup . 26
3.4.2 The KZG commitment scheme 27
3.4.3 Multi-openings . 28
3.4.4 Root check . 28

3.5 KZG takeaways . 30

2

4 SNARKs 31
4.1 Introduction to SNARKs . 31

4.1.1 What can you do with a SNARK? 32
4.2 PLONK, a zkSNARK protocol 32

4.2.1 Arithmetization . 32
4.2.2 An instance of PLONK 33
4.2.3 Step 1: the commitment 35
4.2.4 Step 2: gate check . 36
4.2.5 Step 3: proving the copy constraints 36
4.2.6 Step 4: public and private witnesses 36

4.3 Copy constraints in PLONK . 36
4.3.1 Easier case: permutation check 37
4.3.2 Copy check . 38

4.4 Making it non-interactive: Fiat-Shamir 41
4.5 SNARK takeaways . 42

5 Fully Homomorphic Encryption 43
5.1 FHE and leveled FHE . 43
5.2 A hard problem: learning with errors 44

5.2.1 A small example of an LWE problem 44
5.2.2 General problem . 46

5.3 Public-key cryptography from LWE 46
5.3.1 Encryption . 47
5.3.2 An example . 48
5.3.3 Decryption . 48
5.3.4 How does this work in general? 48

5.4 Leveled FHE from LWE . 49
5.4.1 The main idea: approximate eigenvalues 49
5.4.2 Operations on encrypted data 50
5.4.3 The “Flatten” operation 51
5.4.4 Error analysis . 52

5.5 FHE takeaways . 53

6 Oblivious RAM 54
6.1 Oblivious RAM: problem definitions 55
6.2 Naive solutions . 56

6.2.1 Naive solution 1 . 56
6.2.2 Naive solution 2 . 56
6.2.3 Naive solution 3 . 56
6.2.4 Important observation . 56

6.3 Binary-tree ORAM: data structure 56
6.3.1 Server data structure . 57
6.3.2 Main path invariant . 57
6.3.3 Imaginary position map 57

6.4 Binary-tree ORAM: operations 57
6.4.1 Fetching a block . 57

3

6.4.2 Remapping a block . 57
6.4.3 Eviction . 58
6.4.4 Algorithm pseudo-code 60

6.5 Analysis . 60
6.5.1 Obliviousness . 61
6.5.2 Correctness . 61

6.6 Binary-tree ORAM: recursion . 62
6.7 Path ORAM . 62

6.7.1 Other applications of ORAM 63
6.8 ORAM takeaways . 63

4

1 Introduction

Brian Gu and Yan X Zhang

1.1 What is programmable cryptography?

Cryptography is everywhere now and needs no introduction. Programmable
cryptography is a term coined by 0xPARC for a second generation of crypto-
graphic primitives that has arisen in the last 15 or so years.

To be concrete, let us consider two examples of what protocols designed by
classical cryptography can do:

• Digital signatures. RSA and ElGamal are examples of digital signature
algorithms, where Alice can perform some protocol to prove to Bob that
she endorses a message. A more complicated example might be a group
signature scheme,1 which allows one member of a group to sign a message
on behalf of the group.

• Confidential computing. For example, consider Yao’s millionaire prob-
lem,2 where Alice and Bob want to know which of them makes more
money without learning anything more about each other’s incomes. With
cryptography, Alice and Bob could use a two-party computation protocol
designed specifically for this purpose.

Classically, first-generation cryptography relied on coming up with a protocol
for solving given problems or computing certain functions. The goal of the
second-generation “programmable cryptography” can then be described as:

We want cryptography that can be “programmed” to work on arbi-
trary problems and functions, rather than designing protocols on a
per-problem or per-function basis.

To draw an analogy, it is like going from single-purpose hardware (like a dig-
ital alarm clock or thermostat) to a general-purpose device (like a smartphone)
which can do any computation so long as someone writes code for it.

Remark 1.1. The quote on the title page (”I have a message M such that
sha(M) = ”0x91af3ac...””) is a concrete example. The hash function sha
is a particular set of arbitrary instructions, yet programmable cryptography
promises that such a proof can be made using a general compiler rather than
inventing an algorithm specific to SHA-256.

1https://en.wikipedia.org/wiki/Group signature
2https://en.wikipedia.org/wiki/Yao%27s Millionaires%27 problem

5

1.2 Ideas in programmable cryptography

Our work presents programmable cryptography through specific topics in several
self-contained “easy pieces,” imitating Richard Feynman’s wonderful approach
to physics exposition. We quickly preview them here.

1.2.1 2PC: two-party computation

In a two-party computation (2PC), two people want to jointly compute some
known function

F (x1, x2),

where the i-th person only knows the input xi, without either person learning
the other person’s input.

For example, in Yao’s millionaire problem, Alice and Bob want to know who
has a higher income without revealing their own amounts. This is the case
where F is the comparison function (F (x1, x2) is 1 if x1 > x2, 2 if x2 > x1, and
0 if the two inputs are equal), and xi is the i-th person’s income.

Two-party computation makes a promise that we will be able to do this for
any function F as long as we can implement it in code. It generalizes to multi-
party computation (MPC), which is one of the main classes of programmable
cryptography.

1.2.2 SNARKs: proofs of general statements

A powerful way of thinking about a signature scheme is that it is a proof.
Specifically, Alice’s signature is a proof that “I [the person who generated the
signature] know Alice’s private key.” Similarly, a group signature can be thought
of as a succinct proof that “I know one of Alice, Bob, or Charlie’s private keys.”

In the spirit of programmable cryptography, a SNARK generalizes this con-
cept as a “proof system” protocol that produces efficient proofs of arbitrary
statements of the form:

“I know X such that F (X,Y) = Z, where F, Y, Z are public,” once the
statement is encoded as a system of equations. One such statement would be
“I know M such that sha(M) = Y .”

SNARKs are an active area of research, and many different SNARKs are
known. We will focus on a particular example, PLONK (Section 4.2).

1.2.3 FHE: fully homomorphic encryption

Imagine you have some private text that you want to translate into another
language. While many services today will do this, even for free, we can also
imagine that you care about security a lot and you really do not want the
translating service to know anything about your text at all.

In fully homomorphic encryption (FHE), one person encrypts some data x,
and then a second person can perform arbitrary operations on the encrypted
data x without being able to read x.

6

With this technology, you have a solution to your problem! You simply
encrypt your text Enc(x) and send it to your FHE machine translation server.
The server will faithfully translate it into another language and give you Enc(y),
where y is the translation of x. You can then decrypt and obtain y, knowing
that the server cannot extract anything meaningful from Enc(x) without your
secret key.

1.2.4 ORAM: Oblivious RAM

You want to perform a private computation on a large database. The database
is so large that you cannot store it yourself – and you do not trust the server it
is stored on.

First off, you will encrypt the data, so the server cannot read it. But the
server still has an attack: They can study your access patterns. For example,
they can see which records you access most frequently, or which records you
access at the same time as other records. In many applications this is enough
for the server to learn sensitive information.

Oblivious RAM (ORAM) protects against exactly this sort of attack. Obliv-
ious RAM is an algorithm you use to “scramble” your memory access requests.
When you feed your request into the ORAM algorithm, the ORAM algorithm
sends some scrambled read and write requests to the server. Only one of the
scrambled requests is the request you are interested in; the others keep the
server from learning which request you care about.

1.3 Programmable cryptography in the world

In the past decade, there has been a surprisingly high amount of theoretical work
but also a surprisingly low amount of implementation work on primitives in pro-
grammable cryptography. However, recent advances in areas like blockchain and
other decentralized systems are rapidly driving demand for practical implemen-
tations of programmable cryptography. The gap that is being revealed right
now, as theory meets reality, is exciting and enlightening.

Many of the protocols we mention in this book can be implemented today,
but only at a very high cost (for example, the cost of proving a computation
in a SNARK can be millions of times the cost of performing the computation
directly). As we study the theory of programmable cryptography, it is useful to
keep in mind some practical questions. Can we reduce the theoretical overhead
of programmable cryptography? How can we make programmable cryptography
systems more performant for modern hardware and software systems? What
other systems or applications can be built on top of this technology?

It is easy to be carried away by the staggering possibilities, and to imag-
ine a perfect “post-cryptographic” world where everyone has control over all
their data and everyone’s security preferences are completely fulfilled. It is
also easy to be cynical and assume that these ideas will go nowhere. Reality
is always somewhere in the middle; the Internet today offers free search and

7

civilization-scale repositories of information to everyone, but is also used for
plenty of frivolous or even antisocial activity.

No matter what the future actually holds, one thing is clear - it is up to
people who are capable, curious, and optimistic to guide the next stage of the
evolution of cryptography-based systems. We hope that these “easy pieces” will
inspire you to read, imagine, and build.

8

2 Two-Party Computation

Brian Gu and Brian Lawrence

2.1 Garbled circuits

Imagine Alice and Bob each have some secret values a and b, and would like
to jointly compute some function f over their respective inputs. Furthermore,
they would like to keep their secret values hidden from each other: if Alice and
Bob follow the protocol honestly, they should both end up learning the correct
value of f(a, b), but Alice should not learn anything about b (other than what
could be learned by knowing both a and f(a, b)), and likewise for Bob.

Yao’s garbled circuits is one of the most well-known 2PC protocols. The
protocol is quite clever, and optimized variants of the protocol are being imple-
mented and used today.3

2.1.1 The problem

Here is our problem setting, slightly more formally:

• Alice knows a secret bitstring a of length m bits.

• Bob knows a secret bitstring b of length n bits.

• f is a binary circuit, which takes in m + n bits, and runs them through
some k gates. The outputs of some of the gates are the public outputs of
the circuit. Without loss of generality, let us also suppose that each gate
in f accepts either 1 or 2 input bits, and outputs a single output bit.

• Alice and Bob would like to jointly compute f(a, b) without revealing their
secrets to each other.

2.1.2 Outline of solution

Our solution will contain two key components:

• Alice constructs a garbled circuit that takes in the value b (whatever it
is) and spits out f(a, b). A garbled circuit, roughly speaking, is an “en-
crypted” circuit that takes encrypted input and creates encrypted output.

3https://github.com/privacy-scaling-explorations/mpz/tree/dev/crates/mpz-garble

9

• An oblivious transfer is a protocol where Alice has two messages, m0 and
m1. Bob can get exactly one of them, mi, without letting Alice know what
i is. In this context, Alice ends up sending Bob a password for his input
in a way that Bob does not learn the passwords for any other inputs, and
Alice does not find out which password she sent to Bob.

In slightly more detail:

1. Whatever the function f is, we will assume that it takes m + n bits of
input a1, . . . , am and b1, . . . , bn, and that it is computed by some sort of
circuit made of AND, OR and NOT gates.

2. Alice’s first task is to “plug her own inputs into this circuit f .” The result
will be a new circuit (you might call it fa) that has just n input slots for
Bob’s n bits b1, . . . , bn.

3. Now, Alice is going to “garble” the circuit fa. Once it is garbled, Bob
will not be able to see how it works. He will only be able to plug his own
input (b1, . . . , bn) into the circuit.

4. To prevent Bob from plugging other inputs in as well, a garbled circuit
will require a “password” for each input Bob wants to plug in – a different
password for every possible input. If Bob has the password for (b1, . . . , bn),
he can learn fa(b1, . . . , bn) = f(a, b), but he will not learn anything else
about how the circuit works.

5. Now, Alice has all the passwords for all the possible inputs, but how
can she give Bob the password for (b1, . . . , bn)? Alice does not want to
let Bob have any other passwords – and Bob is not willing to tell Alice
which password he is asking for. This is where we will use the “oblivious
transfer.”

We now flesh out this outline, starting with garbled circuits.

2.1.3 Garbled gates

Our garbled circuits are going to be built out of garbled gates. A garbled gate
is like a traditional gate (like AND, OR, NAND, NOR), except its functionality
is hidden.

What does that mean? Let us say the gate has two input bits, so there are
four possible inputs to the gate: (0, 0), (0, 1), (1, 0), (1, 1). For each of those four
inputs (x, y), there is a secret password Px,y. The gate G will only reveal its
value G(x, y) if you give it the password Px,y.

Here is a natural approach to make a garbled gate. Choose a symmetric-key4

encryption scheme Enc and publish the following table:

4Symmetric-key encryption is probably what you think of when you think of plain-vanilla
encryption: You use a secret key K to encrypt a message m, and then you (or someone else)
need the same secret key K to decrypt it.

10

(0, 0) EncP0,0
(G(0, 0))

(0, 1) EncP0,1(G(0, 1))
(1, 0) EncP1,0

(G(1, 0))
(1, 1) EncP1,1

(G(1, 1))

If you have the values x and y, and you know the password Px,y, you just
go to the (x, y) row of the table, look up

EncPx,y (G(x, y)),

decrypt it, and learn G(x, y).
But if you do not know the password Px,y, assuming Enc is a suitably secure

encryption scheme, you will not learn anything about the value Gx,y from its
encryption.

2.1.4 Chaining garbled gates

The next step is to combine a bunch of garbled gates into a circuit. We will
need to make two changes to the protocol.

1. To chain garbled gates together, we need to modify the output of each
gate: In addition to outputting the bit z = Gi(x, y), the i-th gate Gi will
also output a password Pz that Bob can use at the next step.

Now Bob has one bit coming in for the left-hand input x, and it came with
some password P left

x – and then another bit coming in for y, with some
password P right

y . To get the combined password Px,y, Bob concatenates

the two passwords P left
x and P right

y .

2. To keep the functionality of the circuit hidden, we do not want Bob to
learn anything about the structure of the individual gates – even the single
bit he gets as output.

This is an easy fix: Instead of having the gate output both the bit z and
the password Pz, we will have the gate just output Pz.

But now how does Bob know what values to feed into the next gate? The
left-hand column of the “gate table” needs to be indexed by the passwords P left

x

and P right
y , not by the bits (x, y). But we do not want Bob to learn the other

passwords from the table!
Let us say this again. We want:

• If Bob knows both passwords P left
x and P right

y , Bob can find the row of the
table for the input (x, y).

• If Bob does not know the passwords, he cannot learn them by looking at
the table.

Of course, the solution is to use a hash function! So here is the new version
of our garbled gate. For simplicity, we will assume it is an AND gate – so the
outputs will be (the passwords encoding) 0, 0, 0, 1.

11

hash(P left
0 , P right

0) EncP left
0 ,P right

0
(P out

0)

hash(P left
0 , P right

1) EncP left
0 ,P right

1
(P out

0)

hash(P left
1 , P right

0) EncP left
1 ,P right

0
(P out

0)

hash(P left
1 , P right

1) EncP left
1 ,P right

1
(P out

1)

2.1.5 How Bob uses one gate

Let us play through one round of Bob’s gate-using protocol.

1. Suppose Bob’s input bits are 0 (on the left) and 1 (on the right). Bob
does not know he has 0 and 1 (but we do!). Bob knows his left password

is some value P left
0 , and his right password is some other value P right

1 .

2. Bob takes the two passwords, concatenates them, and computes a hash.
Now Bob has

hash(P left
0 , P right

1).

3. Bob finds the row of the table indexed by hash(P left
0 , P right

1), and he uses
it to look up

EncP left
0 ,P right

1
(P out

0).

4. Bob uses the concatenation of the two passwords P left
0 , P right

1 to decrypt
P out
0 .

5. Now Bob has the password for the bit 0 to feed into the next gate – but
he does not know his bit is 0.

So Bob is exactly where he started: he knows the password for his bit, but
he does not know his bit. So we can chain together as many of these garbled
gates as we like to make a full garbled circuit.

2.1.6 How the circuit ends

At the end of the computation, Bob needs to learn the final result. How?
Easy! The final output gates are different from the intermediate gates. In-

stead of outputting a password, they will just output the resulting bit in plain
text.

2.1.7 How the circuit starts

This is trickier. At the beginning of the computation, Bob needs to learn the
passwords for all of his input bits. Let us frame the problem for just a single
bit.

• Alice has two passwords, P0 and P1.

• Bob has a bit b, either 0 or 1.

12

• Bob wants to learn one of the passwords, Pb, from Alice.

• Bob does not want Alice to learn the value of b.

• Alice does not want Bob to learn the other password.

This is where oblivious transfer comes in, which we will see in (Section 2.2).

2.2 Oblivious transfer

Alice has n messages x1, . . . , xn. We will assume the messages are essentially
unrelated to each other (since we could always pad them with random bits).
Bob wants to request the i-th message, without letting Alice learn anything
about the value of i. Alice wants to send Bob xi, without letting him learn
anything about the other n − 1 messages. An oblivious transfer (OT) allows
Alice to transfer a single message to Bob, but she remains oblivious as to which
message she has transferred. We will see two simple protocols to achieve this.

(In fact, for two-party computation, we only need “1-of-2 OT”: Alice has x1

and x2, and she wants to send one of those two to Bob. But “1-of-n OT” is not
any harder, so we will do 1-of-n.)

2.2.1 Commutative encryption

Let us imagine that Alice and Bob have access to some encryption scheme that
is commutative:

Decb(Deca(Encb(Enca(x)))) = x.

In other words, if Alice encrypts a message, and Bob applies a second layer
of encryption to the encrypted message, it does not matter which order Alice
and Bob decrypt the message in – they will still get the original message back.

A metaphor for commutative encryption is a box that is locked with two
padlocks. Alice puts a message inside the box, locks it with her lock, and ships
it to Bob. Bob puts his own lock on the box and ships it back to Alice. What
is special about commutative encryption is that Bob’s lock does not block Alice
from unlocking her own – so Alice can remove her lock and send it back to Bob,
and then Bob removes his lock and recovers the message.

Mathematically, you can get commutative encryption by working in a finite
group (for example F×

p , or an elliptic curve).

1. Alice’s secret key is an integer a; she encrypts a message g by raising it to
the a-th power, and she sends Bob ga.

2. Bob encrypts again with his own secret key b, and he sends (ga)b = gab

back to Alice.

3. Now Alice removes her lock by taking an a-th root. The result is gb, which
she sends back to Bob.

4. Bob takes a b-th root, recovering g.

13

2.2.2 OT using commutative encryption

Our first oblivious transfer protocol is built on the commutative encryption we
just described.

Alice has n messages x1, . . . , xn, which we may as well assume are elements
of the group G. Alice chooses a secret key a, encrypts each message, and sends
all n ciphertexts to Bob:

Enca(x1), . . . ,Enca(xn).

But crucially, Alice sends the ciphertexts in order, so Bob knows which is
which.

At this point, Bob cannot read any of the messages, because he does not know
the keys. No problem! Bob just picks out the i-th ciphertext Enca(xi), adds
his own layer of encryption onto it, and sends the resulting doubly-encrypted
message back to Alice:

Encb(Enca(xi)).

Alice does not know Bob’s key b, so she cannot learn anything about the
message he encrypted – even though it originally came from her. Nonetheless
she can apply her own decryption method Deca to it. Since the encryption
scheme is commutative, the result of Alice’s decryption is simply

Encb(xi),

which she sends back to Bob.
And Bob decrypts the message to learn xi.

2.2.3 OT in one step

The protocol above required one and a half rounds of communication: In total,
Alice sent two messages to Bob (Step 1 and 3), and Bob sent one message to
Alice (Step 2).

We can do better, using public-key cryptography.
Let us start with a simplified protocol that is not quite secure. The idea is

for Bob to send Alice n keys
b1, . . . , bn.

One of the n, say bi, is a public key for which Bob knows the private key.
The other n− 1 are random garbage.

Alice then uses one key to encrypt each message, and sends back to Bob:

Encb1(x1), . . . ,Encbn(xn).

Now Bob uses the private key for bi to decrypt xi, and he is done.
Is Bob happy with this protocol? Yes. Alice has no way of learning the value

of i, as long as she cannot distinguish a true public key from a random fake key
(which is true of public-key schemes in practice).

14

But is Alice happy with it? Not so much. A cheating Bob could send n
different public keys, and Alice has no way to detect it – like we just said, Alice
cannot tell random garbage from a true public key! And then Bob would be
able to decrypt all n messages x1, . . . , xn.

But there is a simple trick to fix it. Bob chooses some “verifiably random”
value r; to fix ideas, we could agree to use r = sha(1). Then we require that
the numbers b1, . . . , bn form an arithmetic progression with common difference
r. Bob chooses i, computes a public-private key pair, and sets bi equal to
that key. Then all the other terms b1, . . . , bn are determined by the arithmetic
progression requirement bj = bi + (j − i)r. (Or, if the keys are elements of a
group in multiplicative notation, we could write this as bj = rj−i · bi.)

Is this secure? If we think of the hash function as a random-number gener-
ator, then all n − 1 “garbage keys” are effectively random values. So now the
question is: Can Bob compute a private key for a given (randomly generated)
public key? It is a standard assumption in public-key cryptography that Bob
cannot do this: There is no algorithm that reads in a public key and spits out
the corresponding private key. (Otherwise, the whole enterprise is doomed.) So
Alice is guaranteed that Bob only knows how to decrypt (at most) one message.

In fact, some public-key cryptosystems (like ElGamal) have a sort of “homo-
morphic” property: If you know the private keys for two different public keys
b1 and b2, then you can compute the private key for the public key b2b

−1
1 . (In

ElGamal, this is true because the private key is just the discrete logarithm of
the public key.) So, if Bob could dishonestly decrypt two of Alice’s messages, he
could compute the private key for the public key r. But r is verifiably random,
and it is very hard (we assume) for Bob to find a private key for a random public
key.

2.3 2PC takeaways

1. A garbled circuit allows Alice and Bob to jointly compute some function
over their respective secret inputs. We can think of this as your prototyp-
ical 2PC (two-party computation).

2. The main ingredient of a garbled circuit is garbled gates, which are gates
whose functionality is hidden. This can be done by Alice precomputing
different outputs of the garbled circuit based on all possible inputs of Bob,
and then letting Bob pick one.

3. Bob “picks an input” with the technique of oblivious transfer (OT). This
can be built in various ways, including with commutative encryption or
public-key cryptography.

4. More generally, it is also possible for a group of people to compute what-
ever secret function they want, which is the field of multi-party computa-
tion (MPC).

15

3 SNARKs Prelude: Elliptic Curves and Poly-
nomial Commitments

Evan Chen

Before we talk about SNARKs (specifically, PLONK), it helps to separate
out an ingredient that underlies much of programmable cryptography, which
is the idea of a polynomial commitment. Specifically, we will talk about the
KZG polynomial commitment, which plays an important role in PLONK (and
many other protocols). For a higher-resolution understanding of KZG, it helps
to understand elliptic curves (especially in the context of pairings), which are
ubiquitous in cryptography. If you are uninterested (or experienced) in math-
ematical details, you can and should skip elliptic curves and jump to Section
3.4. If you are comfortable with black-boxing Section 3.4, you can even jump
straight to SNARKs into the next chapter.

The roadmap goes roughly as follows:

• In Section 3.1 we will define elliptic curves and describe one standard
elliptic curve E, the BN254 curve, that will be used in these notes.

• In Section 3.2 we describe the discrete logarithm assumption (Assumption
3.6), which we need to make to provide security to our protocols. As an
example, in Section 3.2.2 we describe how Assumption 3.6 can be used to
construct a signature scheme, namely EdDSA.5

• The EdDSA idea will later grow up to be the KZG commitment scheme
in Section 3.4.

3.1 Elliptic curves

Every modern cryptosystem rests on a hard problem – a computationally in-
feasible challenge whose difficulty makes the protocol secure. The best-known
example is RSA,6 which is secure because it is hard to factor a composite number
(like 6887) into prime factors (6887 = 71 · 97).

Our SNARK protocol will be based on a different hard problem: the “discrete
logarithm problem” (see Section 3.2) on elliptic curves. But before we get to
the problem, we need to introduce some of the math behind elliptic curves.

An elliptic curve is a set of points with a group operation. The set of points
is the set of solutions (x, y) to an equation in two variables; the group operation

5https://en.wikipedia.org/wiki/EdDSA
6https://en.wikipedia.org/wiki/RSA (cryptosystem)

16

is a rule for “adding” two of the points to get a third point. Our first task will
be to understand what all this means. Rather than set up a general definition of
elliptic curve, for these notes we will be satisfied to describe one specific elliptic
curve that can be used for all the protocols we describe later. The curve we
choose for these notes is the BN254 curve.

The BN254 specification fixes a specific7 large prime p ≈ 2254 (and a second
large prime q ≈ 2254 that we define later) which has been specifically engineered
to have certain properties (Jonathan Wang has a blog post8 about the properties
of this curve). The name BN stands for Barreto-Naehrig, two mathematicians
who proposed a family of such curves in 2006.9

Definition 3.1. The BN254 curve is the elliptic curve

E(Fp) : Y
2 = X3 + 3 (1)

defined over Fp, where p ≈ 2254 is the prime from the BN254 specification.

So each point on E(Fp)) is an ordered pair (X,Y) ∈ F2
p satisfying Equation

(1). Okay, actually, that is a white lie: Conventionally, there is one additional
point O = (0,∞) called the “point at infinity” added in (whose purpose we
describe in the next section).

The constants p and q are contrived so that the following holds:

Theorem 3.2. BN254 has prime order: Let E be the BN254 curve. The number
of points in E(Fp), including the point at infinity O, is a prime q ≈ 2254.

Definition 3.3. This prime q ≈ 2254 is affectionately called the Baby Jubjub
prime (a reference to The Hunting of the Snark10). It will usually be denoted
by q in these notes.

So, at this point, we have a bag of q points denoted E(Fp). However, right
now it only has the structure of a set.

The beauty of elliptic curves is that it is possible to define an addition
operation on the curve; this is called the group law on the elliptic curve.11 This

7If you must know, the values in the specification are given exactly by

x := 4965661367192848881

p := 36x4 + 36x3 + 24x2 + 6x+ 1

= 218882428718392752222464057452572750886

96311157297823662689037894645226208583

q := 36x4 + 36x3 + 18x2 + 6x+ 1

= 218882428718392752222464057452572750885

48364400416034343698204186575808495617.

8https://hackmd.io/@jpw/bn254
9https://link.springer.com/content/pdf/10.1007/11693383 22.pdf

10https://en.wikipedia.org/wiki/The Hunting of the Snark
11https://en.wikipedia.org/wiki/Elliptic curve#The group law

17

addition will make E(Fp) into an abelian group whose identity element is the
point at infinity O. This addition can be formalized as a group law.

This group law involves some heavy algebra. It is not important to under-
stand exactly how it works. All you really need to take away from this section
is that there is some group law, and we can program a computer to compute it.
We provide details below for the interested reader.

So, let us get started. The equation of E is cubic – the highest-degree
terms have degree 3. This means that (in general) if you take a line
y = mx+ b and intersect it with E, the line will meet E in exactly
three points. The basic idea behind the group law is: If P,Q,R are
the three intersection points of a line (any line) with the curve E,
then the group-law addition of the three points is

P +Q+R = O.

(You might be wondering how we can do geometry when the coordi-
nates x and y are in a finite field. It turns out that all the geometric
operations we are describing – like finding the intersection of a curve
with a line – can be translated into algebra, and then you just do
the algebra in your finite field. We will come back to this.)

Why three points? Algebraically, if you take the equations Y 2 =
X3 + 3 and Y = mX + b and try to solve them, you get

(mX + b)2 = X3 + 3,

which is a degree-3 polynomial in X, so it has (at most) three roots.
In fact if it has two roots, it is guaranteed to have a third (because
you can factor out the first two roots, and then you are left with a
linear factor).

Now given two points P and Q, how do we find their sum P + Q?
We can draw the line through the two points. That line – like any
line – will intersect E in three points: P , Q, and a third point R.
Now since P +Q+R = 0, we know that

−R = P +Q.

So now the question is just: how to find −R? Well, it turns out that
if R = (xR, yR), then

−R = (xR,−yR).

Why is this? If you take the vertical lineX = xR, and try to intersect
it with the curve, it looks like there are only two intersection points.
After all, we are solving

Y 2 = x3
R + 3,

18

and since xR is fixed now, this equation is quadratic. The two roots
are Y = ±yR.
There are only two intersection points, but we say that the third
intersection point is “the point at infinity” O. (The reason for this
lies in projective geometry, but we will not get into it.) So the group
law here tells us

(xR, yR) + (xR,−yR) +O = O.

And since O is the identity, we get

−R = (xR,−yR).

So:

• Given a point P = (xP , yP), its negative is just−P = (xP ,−yP).
• To add two points P and Q, compute the line through the two
points, let R be the third intersection of that line with E, and
set

P +Q = −R.

We just described the group law as a geometric thing, but there are
algebraic formulas to compute it as well. They are kind of a mess,
but here goes.

If P = (xP , yP) and Q = (xQ, yQ), then the line between the two
points is Y = mX + b, where

m =
yQ − yP
xQ − xP

and
b = yP −mxP .

The third intersection is R = (xR, yR), where

xR = m2 − xP − xQ

and
yR = mxR + b.

There are separate formulas to deal with various special cases (if P =
Q, you need to compute the tangent line to E at P , for example),
but we will not get into it.

In summary, we have endowed the set of points E(Fp) with the additional
structure of an abelian group, which happens to have exactly q elements. How-
ever, an abelian group with prime order is necessarily cyclic. In other words:

19

Theorem 3.4. The group BN254 is isomorphic to Z/qZ: Let E be the BN254
curve. We have the isomorphism of abelian groups

E(Fp) ∼= Z/qZ.

In these notes, this isomorphism will basically be a standing assumption.
Moving forward, we will abuse notation slightly and just write E instead of
E(Fp). In fancy language, E will be a one-dimensional vector space over Fq. In
less fancy language, we will be working with points on E as black boxes. We
will be able to add them, subtract them, and multiply them by arbitrary scalars
from Fq.

Consequently — and this is important — one should think of Fq as the
base field for all our cryptographic primitives (despite the fact that the
coordinates of our points are in Fp).

Remark 3.5. Whenever we talk about protocols, and there are any sorts of
“numbers” or “scalar” in the protocol, these scalars are always going to be
elements of Fq. Since q ≈ 2254, that means we are doing something like 256-bit
integer arithmetic. This is why the baby Jubjub prime q gets a special name,
while the prime p is unnamed and does not get any screen-time later.

3.2 Discrete logarithm

For our systems to be useful, rather than relying on factoring, we will rely on
the so-called discrete logarithm assumption.

Assumption 3.6. Discrete logarithm assumption: Let E be the BN254 curve
(or another standardized curve). Given arbitrary nonzero g, g′ ∈ E, the discrete
logarithm problem asks you to find an integer n such that n · g = g′.

Experience suggests that the discrete logarithm problem is hard: In general,
we do not know a fast algorithm to solve it. The discrete logarithm assumption
says that no such algorithm exists.

In other words, if one only sees g ∈ E and n · g ∈ E, one cannot find n. For
cryptography, we generally assume g has order q, so we will talk about n ∈ N
and n ∈ Fq interchangeably. In other words, n will generally be thought of as
being up to about 2254 in size.

Remark 3.7 (The name “discrete log”). This problem is called “discrete log”
because if one uses multiplicative notation for the group operation, it looks like
solving gn = g′ instead. We will never use this multiplicative notation in these
notes.

On the other hand, given g ∈ E, one can compute n · g in just O(log n)
operations, by repeated squaring.12 For example, to compute 400g, one only

12https://en.wikipedia.org/wiki/Exponentiation by squaring

20

needs to do 10 additions, rather than 400: One starts with

2g = g + g

4g = 2g + 2g

8g = 4g + 4g

16g = 8g + 8g

32g = 16g + 16g

64g = 32g + 32g

128g = 64g + 64g

256g = 128g + 128g

and then computes
400g = 256g + 128g + 16g.

Because we think of n as up to q ≈ 2254-ish in size, we consider O(log n)
operations like this to be quite tolerable.

3.2.1 Curves other than BN254

We comment briefly on how the previous definitions adapt to other curves,
although readers could get away with always assuming E is BN254 if they
prefer.

In general, we could have chosen for E any equation of the form Y 2 =
X3 + aX + b and chosen any prime p ≥ 5 such that a nondegeneracy constraint
4a3+27b2 ̸≡ 0mod p holds. In such a situation, E(Fp) will indeed be an abelian
group once the identity element O = (0,∞) is added in.

How large is E(Fp)? There is a theorem called Hasse's theorem13 that states
the number of points in E(Fp) is between p+1−2√p and p+1+2

√
p. But there

is no promise that E(Fp) will be prime; consequently, it may not be a cyclic
group either. So among many other considerations, the choice of constants in
BN254 is engineered to get a prime order.

There are other curves used in practice for which E(Fp) is not a prime, but
rather a small multiple of a prime. The popular Curve2551914 is such a curve
that is also believed to satisfy Assumption 3.6. Curve25519 is defined as

Y 2 = X3 + 486662X2 +X

over Fp for the prime p := 2255 − 19. Its order is 8 times a large prime

q′ := 2252 + 27742317777372353535851937790883648493.

In that case, to generate a random point on Curve25519 with order q′, one will
usually take a random point on the curve and multiply it by 8.

BN254 is also engineered to have a property called pairing-friendliness, which
is defined in Section 3.3.2 when we need it later. (In contrast, Curve25519 does
not have this property.)

13https://en.wikipedia.org/wiki/Hasse's theorem on elliptic curves
14https://en.wikipedia.org/wiki/Curve25519

21

3.2.2 Example application: EdDSA signature scheme

We will show how Assumption 3.6 can be used to construct a signature scheme
that replaces RSA. This scheme is called EdDSA,15 and it is used quite fre-
quently (e.g., in OpenSSH and GnuPG). One advantage it has over RSA is that
its key size is much smaller: both the public and private key are 256 bits. (In
contrast, RSA needs 2048-4096 bit keys for comparable security.)

Definition 3.8. Let E be an elliptic curve and let g ∈ E be a fixed point on it
of prime order q ≈ 2254. For n ∈ Z (equivalently n ∈ Fq) we define

[n] := n · g ∈ E.

The hardness of the discrete logarithm means that, given [n], we cannot get
n. You can almost think of the notation as an “armor” on the integer n: It
conceals the integer, but still allows us to perform (armored) addition:

[a+ b] = [a] + [b].

In other words, n 7→ [n] viewed as a map Fq → E is Fq-linear.
So now suppose Alice wants to set up a signature scheme.

Algorithm 3.9 (EdDSA public and secret key).

1. Alice picks a random integer d ∈ Fq as her secret key (a piece of informa-
tion that she needs to keep private for the security of the protocol).

2. Alice publishes [d] ∈ E as her public key (a piece of information which,
even when obtained by adversaries, does not challenge the security of the
protocol).

Now suppose Alice wants to prove to Bob that she approves the message
msg, given her published public key [d].

Algorithm 3.10 (EdDSA signature generation). Suppose Alice wants to sign
a message msg.

1. Alice picks a random scalar r ∈ Fq (keeping this secret) and publishes
[r] ∈ E.

2. Alice generates a number n ∈ Fq by hashing msg with all public informa-
tion, say

n := hash([r],msg, [d]).

3. Alice publishes the integer

s := (r + dn)mod q.

In other words, the signature is the ordered pair ([r], s).

15https://en.wikipedia.org/wiki/EdDSA

22

Algorithm 3.11 (EdDSA signature verification). For Bob to verify a signature
([r], s) for msg:

1. Bob recomputes n (by also performing the hash) and computes [s] ∈ E.

2. Bob verifies that [r] + n · [d] = [s].

An adversary cannot forge the signature even if they know r and n. Indeed,
such an adversary can compute what the point [s] = [r] + n[d] should be, but
without knowledge of d they cannot get the integer s, due to Assumption 3.6.

The number r is called a blinding factor because its use prevents Bob from
stealing Alice’s secret key d from the published s. It is therefore imperative
that r is not known to Bob nor reused between signatures, and so on. One
way to do this would be to pick r = hash(d,msg); this has the bonus that it is
deterministic as a function of the message and signer.

In Section 3.4 we will use ideas quite similar to this to build the KZG com-
mitment scheme.

3.2.3 Example application: Pedersen commitments

A commitment scheme is a protocol where Alice wants to commit some value
x to Bob that is later revealed. Typically Alice gives Bob some “commitment”
Com(x) and later reveals x. What we want is that this protocol is both binding
(Alice cannot change her mind about x depending on Bob’s later actions) and
hiding (Bob does not get any information about x from Com(x)). The KZG
scheme we are building towards will be a commitment scheme for polynomials,
but we can already use elliptic curves to commit numbers with something
called a Pedersen commitment, which we will now describe.

A multivariable generalization of Assumption 3.6 is that if g1, . . . , gn ∈ E are
a bunch of randomly chosen points of E with order q, then it is computationally
infeasible to find (a1, . . . , an) ̸= (b1, . . . , bn) ∈ Fn

q such that

a1g1 + · · ·+ angn = b1g1 + · · ·+ bngn.

(Remember that q ≈ 2256 is very large.)

Definition 3.12. In these notes, if there is a globally known elliptic curve E
and points g1, . . . , gn have order q and no known nontrivial linear dependencies
between them, we will say they are a computational basis over Fq.

Remark 3.13. This may horrify pure mathematicians because we are pretend-
ing the map

Fn
q → Fq by (a1, . . . , an) 7→

n∑
1

aigi

is injective, even though the domain is an n-dimensional Fq-vector space and
the codomain is one-dimensional. This can feel weird because our instincts from
linear algebra in pure math are wrong now. This map, while not injective in
theory, ends up being injective in practice (because we cannot find collisions).
And this is a critical standing assumption for this entire framework!

23

This injectivity gives us a sort of hash function on vectors (with “linearly
independent” now being phrased as “we cannot find a collision”). To spell this
out:

Definition 3.14. Let g1, . . . , gn ∈ E be a computational basis over Fq. Given
a vector

a⃗ = ⟨a1, . . . , an⟩ ∈ Fn
q

of scalars, the group element∑
aigi = a1g1 + · · ·+ angn ∈ E

is called the Pedersen commitment to our vector a⃗.

The Pedersen commitment is thus a sort of hash function: Given the group
element above, one cannot recover any of the ai; but given the entire vector

→
a

one can compute the Pedersen commitment easily.
We will not use Pedersen commitments in this book, but they will be closely

related to KZG.

3.3 Bilinear pairings on elliptic curves

Before we are ready for KZG, there is one more piece of elliptic curve math that
we need.

Recall that the map [•] : Fq → E is linear, meaning that [a + b] = [a] + [b],
and [na] = n[a]. But as written we cannot do “armored multiplication”:

Claim 3.15. As far as we know, given [a] and [b], one cannot compute [ab].

On the other hand, it does turn out that we know a way to verify a claimed
answer on certain curves. That is:

Proposition 3.16. On the curve BN254, given three points [a], [b], and [c] on
the curve, one can verify whether ab = c.

The technique needed is that one wants to construct a nondegenerate bilinear
function

pair : E × E → Z/NZ

for some large integer N . We think this should be called a bilinear pairing, but
for some reason everyone just says pairing instead. A curve is called pairing-
friendly if this pairing can be computed reasonably quickly (e.g., BN254 is
pairing-friendly, but Curve25519 is not).

This construction actually uses some really deep number theory (heavier
than all the math in Section 3.1 that is well beyond the scope of this modest
book. Fortunately, we will not need the details of how it works; but we will
comment briefly in Section 3.3.2 on what curves it can be done on. And this
pairing algorithm needs to be worked out just once for the curve E; and then
anyone in the world can use the published curve for their protocol.

24

Going a little more generally, the four-number equation

pair([m], [n]) = pair([m′], [n′])

will be true whenever mn = m′n′, because both sides will equal mn pair([1], [1]).
So this gives us a way to verify two-by-two multiplication.

Remark 3.17. The last sentence is worth bearing in mind: In all the protocols
we will see, the pairing is only used by the verifier Victor, never by the prover
Peggy.

Remark 3.18. On the other hand, we currently do not seem to know a good
way to do multilinear pairings. For example, we do not know a good trilinear
map E × E × E → Z/NZ that would allow us to compare [abc], [a], [b], [c]
(without knowing one of [ab], [bc], [ca]).

3.3.1 Verifying more complicated claims

Example 3.19. Suppose Peggy wants to convince Victor that y = x3 + 2,
where Peggy has sent Victor elliptic curve points [x] and [y]. To do this, Peggy
additionally sends to Victor [x2] and [x3].

Given [x], [x2], [x3], and [y], Victor verifies that:

• pair([x2], [1]) = pair([x], [x])

• pair([x3], [1]) = pair([x2], [x])

• [y] = [x3] + 2[1].

The process of verifying this sort of identity is quite general: The prover
sends intermediate values as needed so that the verifier can verify the claim
using only pairings and linearity.

3.3.2 So which curves are pairing-friendly?

If we chose E to be BN254, the following property holds:

Proposition 3.20. For (p, q) as in BN254, the smallest integer k such that q
divides pk − 1 is k = 12.

This integer k is called the embedding degree. This section is an aside ex-
plaining how the embedding degree affects pairing.

The pairing function pair(a, b) takes as input two points a, b ∈ E on the
elliptic curve, and spits out a value pair(a, b) ∈ F×

pk – in other words, a nonzero

element of the finite field of order pk (where k is the embedding degree we just
defined). In fact, this element will always be a q-th root of unity in Fpk , and it
will satisfy pair([m], [n]) = ζmn, where ζ is some fixed q-th root of unity. The
construction of the pairing is based on the Weil pairing16 in algebraic geometry.

16https://en.wikipedia.org/wiki/Weil pairing

25

How to compute these pairings is well beyond the scope of these notes; the
raw definition is quite abstract, and a lot of work has gone into computing the
pairings efficiently. (For more details, see these notes.17)

The difficulty of computing these pairings is determined by the size of k:
The values pair(a, b) will be elements of a field of size pk, so they will require
256k bits even to store. For a curve to be “pairing-friendly” – in order to be
able to do pairing-based cryptography on it – we need the value of k to be pretty
small.

3.4 KZG commitments

The goal of a polynomial commitment scheme is to have the following API:

• Peggy has a secret polynomial P (X) ∈ Fq[X].

• Peggy sends a short “commitment” to the polynomial (like a hash).

• This commitment should have the additional property that Peggy should
be able to “open” the commitment at any z ∈ Fq. Specifically:

– Victor has an input z ∈ Fq and wants to know P (z).

– Peggy knows P so she can compute P (z); she sends the resulting
number y = P (z) to Victor.

– Peggy can then send a short “proof” convincing Victor that y is the
correct value, without having to reveal P .

The Kate-Zaverucha-Goldberg (KZG) commitment scheme is amazingly ef-
ficient because both the commitment and proof lengths are a single point on E,
encodable in 256 bits, no matter how many coefficients the polynomial has.

3.4.1 The setup

Remember the notation [n] := n · g ∈ E defined in Definition 3.8. To set up the
KZG commitment scheme, a trusted party needs to pick a secret scalar s ∈ Fq

and publish
[s0], [s1], . . . , [sM]

for some large M , the maximum degree of a polynomial the scheme needs to
support. This means anyone can evaluate [P (s)] for any given polynomial P of
degree up to M . For example,

[s2 + 8s+ 6] = [s2] + 8[s] + 6[1].

Meanwhile, the secret scalar s is never revealed to anyone.
The setup only needs to be done by a trusted party once for the curve E.

Then anyone in the world can use the resulting sequence for KZG commitments.

17https://crypto.stanford.edu/pbc/notes/ep/pairing.html

26

Remark 3.21. The trusted party has to delete s after the calculation. If
anybody knows the value of s, the protocol will be insecure. The trusted party
will only publish [s0] = [1], [s1], . . . , [sM]. This is why we call them “trusted”:
the security of KZG depends on them not saving the value of s.

Given the published values, it is (probably) extremely hard to recover the
value of s – this is a case of the discrete logarithm problem.

You can make the protocol somewhat more secure by involving several
different trusted parties. The first party chooses a random [s1], computes
[s01], . . . , [s

M
1], and then discards s1. The second party chooses s2 and com-

putes [(s1s2)
0], . . . , [(s1s2)

M]. And so forth. In the end, the value of s with be
the product of the secrets si chosen by the parties... so the only way they can
break secrecy is if all the “trusted parties” collude.

3.4.2 The KZG commitment scheme

Peggy has a polynomial P (X) ∈ Fp[X]. To commit to it:

Algorithm 3.22 (Creating a KZG commitment).

1. Peggy computes and publishes [P (s)].

This computation is possible as [si] are globally known.
Now consider an input z ∈ Fp; Victor wants to know the value of P (z). If

Peggy wishes to convince Victor that P (z) = y, then:

Algorithm 3.23 (Opening a KZG commitment).

1. Peggy does polynomial division to compute Q(X) ∈ Fq[X] such that

P (X)− y = (X − z)Q(X).

2. Peggy computes and sends Victor [Q(s)], which again she can compute
from the globally known [si].

3. Victor verifies by checking

pair([Q(s)], [s]− [z]) = pair([P (s)]− [y], [1]) (2)

and accepts if and only if Equation (2) is true.

If Peggy is truthful, then Equation (2) will certainly check out.
If y ̸= P (z), then Peggy cannot do the polynomial long division described

above. So to cheat Victor, she needs to otherwise find an element

1

s− x
([P (s)]− [y]) ∈ E.

Since s is a secret nobody knows, there is not any known way to do this.

27

3.4.3 Multi-openings

To reveal P at a single value z, we did polynomial division to divide P (X) by
X−z. But there is no reason we have to restrict ourselves to linear polynomials;
this would work equally well with higher-degree polynomials, while still using
only a single 256-bit curve point for the proof.

For example, suppose Peggy wanted to prove that P (1) = 100, P (2) = 400,
. . . , P (9) = 8100. (We chose these numbers so that P (X) = 100X2 for X =
1, . . . , 9.)

Evaluating a polynomial at 1, 2, . . . , 9 is essentially the same as dividing by
(X − 1)(X − 2) · · · (X − 9) and taking the remainder. In other words, if Peggy
does a polynomial long division, she will find that

P (X) = Q(X)((X − 1)(X − 2) . . . (X − 9)) + 100X2.

Then Peggy sends [Q(s)] as her proof, and the verification equation is that

pair([Q(s)], [(s− 1)(s− 2) . . . (s− 9)]) = pair([P (s)]− 100[s2], [1]).

The full generality just replaces the 100X2 with the polynomial obtained
from Lagrange interpolation18 (there is a unique such polynomial f of degree
n−1). To spell this out, suppose Peggy wishes to prove to Victor that P (zi) = yi
for 1 ≤ i ≤ n.

Algorithm 3.24 (Opening a KZG commitment at n values).

1. By Lagrange interpolation, both parties agree on a polynomial f(X) such
that f(zi) = yi.

2. Peggy does polynomial long division to get Q(X) such that

P (X)− f(X) = (X − z1)(X − z2) · · · (X − zn) ·Q(X).

3. Peggy sends the single element [Q(s)] as her proof.

4. Victor verifies

pair([Q(s)], [(s− z1)(s− z2) . . . (s− zn)]) = pair([P (s)]− [f(s)], [1]).

So one can even open the polynomial P at 1000 points with a single 256-bit
proof. The verification runtime is a single pairing plus however long it takes to
compute the Lagrange interpolation f .

3.4.4 Root check

To make PLONK work, we are going to need a small variant of the multi-opening
protocol for KZG commitments (Section 3.4.3), which we call root check (not a
standard name). Here is the problem statement:

18https://en.wikipedia.org/wiki/Lagrange polynomial

28

Problem 3.25. Suppose one had two polynomials P1 and P2, and Peggy has
given commitments Com(P1) and Com(P2). Peggy would like to prove to Victor
that, say, the equation P1(z) = P2(z) holds for all z in some large finite set S.

Peggy just needs to show that P1−P2 is divisible by Z(X) :=
∏

z∈S(X−z).
This can be done by committing the quotient

H(X) :=
P1(X)− P2(X)

Z(X)
.

Victor then gives a random challenge λ ∈ Fq, and then Peggy opens Com(P1),
Com(P2), and Com(H) at λ.

But we can actually do this more generally with any polynomial expression
F in place of P1 − P2, as long as Peggy has a way to prove the values of F are
correct. As an artificial example, if Peggy has sent Victor Com(P1) through
Com(P6), and wants to show that

P1(42) + P2(42)P3(42)
4 + P4(42)P5(42)P6(42) = 1337,

she could define

F (X) := P1(X) + P2(X)P3(X)4 + P4(X)P5(X)P6(X)− 1337

and run the same protocol with this F . This means she does not have to reveal
any Pi(42), which is great!

To be fully explicit, here is the algorithm:

Algorithm 3.26 (Root check). Assume that F is a polynomial for which Peggy
can establish the value of F at any point in Fq. Peggy wants to convince Victor
that F vanishes on a given finite set S ⊆ Fq.

1. If she has not already done so, Peggy sends to Victor a commitment
Com(F) to F .19

2. Both parties compute the polynomial

Z(X) :=
∏
z∈S

(X − z) ∈ Fq[X].

3. Peggy does polynomial long division to compute H(X) = F (X)
Z(X) .

4. Peggy sends Com(H).

5. Victor picks a random challenge λ ∈ Fq and asks Peggy to open Com(H)
at λ, as well as the value of F at λ.

6. Victor verifies F (λ) = Z(λ)H(λ).
19In fact, it is enough for Peggy to have some way to prove to Victor the values of F .
So for example, if F is a product of two polynomials F = F1F2, and Peggy has already sent

commitments to F1 and F2, then there is no need for Peggy to commit to F .
Instead, in Step 5 below, Peggy opens Com(F1) and Com(F2) at λ, and that proves to

Victor the value of F (λ) = F1(λ)F2(λ).

29

3.5 KZG takeaways

1. Elliptic curves are very useful in cryptography. Roughly speaking, they
are sets of points (usually in F2

p) that satisfy some group law/“addition.”
The BN254 curve is a good “typical curve” to keep in mind.

2. The discrete logarithm assumption is a common “hard problem assump-
tion” used in cryptography with different groups. Specifically, since elliptic
curves are groups, the discrete logarithm assumption over elliptic curves
is very often used.

3. Commitment schemes are ways for one party to commit values to another.
Elliptic curves enable Pedersen commitments, a very useful example of a
commitment scheme.

4. Specifically, polynomial commitment schemes are commitments of poly-
nomials that are small and easy to “open” (evaluate at different points).
KZG is one of the main polynomial commitment schemes being used in
cryptography, such as in PLONK (coming up).

30

4 SNARKs

Evan Chen

4.1 Introduction to SNARKs

Peggy has done some very difficult calculation. She wants to prove to Victor
that she did it. Victor wants to check that Peggy did it, but he is too lazy to
redo the whole calculation himself.

• Maybe Peggy wants to keep part of the calculation secret. Maybe her
calculation was “find a solution to this puzzle,” and she wants to prove
that she found a solution without saying what the solution is.

• Maybe it is just a really long, annoying calculation, and Victor does not
have the energy to check it all line-by-line.

A SNARK lets Peggy (the “prover”) send Victor (the “verifier”) a short
proof that she has indeed done the calculation correctly. The proof will be
much shorter than the original calculation, and Victor’s verification is much
faster. (As a tradeoff, writing a SNARK proof of a calculation is much slower
than just doing the calculation.)

The name stands for:

• Succinct : the proof length is short (in fact, it is a constant length, inde-
pendent of how long the problem is).

• Non-interactive: the protocol does not require back-and-forth communi-
cation.

• Argument : basically a proof. There is a technical difference, but we will
not worry about it.

• of Knowledge: the proof does not just show the system of equations has
a solution; it also shows that the prover knows one.

We will not discuss it here, but it is also possible and frequently useful to
make a zero knowledge (zk) SNARK. These are typically called “zkSNARKs.”
This gives Peggy a guarantee that Victor will not learn anything about the
intermediate steps in her calculation, aside from any particular steps Peggy
chooses to reveal.

31

4.1.1 What can you do with a SNARK?

One answer: You can prove that you have a solution to a system of equations.
Sounds pretty boring, unless you are an algebra student.

Slightly better answer: You can prove that you have executed a program
correctly, revealing some or all of the inputs and outputs, as you please. For
example: You know a message M such that sha(M) = 0xa91af3ac..., but you
do not want to reveal M . Or: You only want to reveal the first 30 bytes of M .
Or: You know a message M , and a digital signature proving that M was signed
by [trusted authority], such that a certain neural network, run on the input M ,
outputs “Good.”

One recent application along these lines is TLSNotary.20 TLSNotary lets
you certify a transcript of communications with a server in a privacy-preserving
way: You only reveal the parts you want to.

4.2 PLONK, a zkSNARK protocol

4.2.1 Arithmetization

The promise of programmable cryptography is that we should be able to perform
proofs for arbitrary functions. That means we need a “programming language”
that we will write our function in. For PLONK, the choice that is used is:
systems of quadratic equations over Fq. In other words, PLONK is going
to give us the ability to prove that we have solutions to a system of quadratic
equations.

Situation 4.1. Suppose we have a system of m equations in k variables x1, . . . , xk:

Q1(x1, . . . , xk) = 0

...

Qm(x1, . . . , xk) = 0.

Of these k variables, the first ℓ variables x1, . . . , xℓ have publicly known, fixed
values; the remaining k − ℓ are unknown.

PLONK will let Peggy prove to Victor the following claim: I know k − ℓ
values xℓ+1, . . . , xk such that (when you combine them with the ℓ public fixed
values x1, . . . , xℓ) the k values x1, . . . , xk satisfy all m quadratic equations.

This leads to the natural question of how a function like SHA-256 can be
encoded into a system of quadratic equations. This process of encoding a prob-
lem into algebra is called arithmetization. It turns out that quadratic equations
over Fq, viewed as an NP problem called Quad-SAT, is NP-complete; in other
words, any NP problem can be rewritten as a system of quadratic equations. If
you are not familiar with this concept, the upshot is that Quad-SAT being NP-
complete means it can serve as a reasonable arithmetization that can express
most reasonable (NP) problems.

20https://tlsnotary.org

32

Remark 4.2 (Example of Quad-SAT encoding 3-SAT). We assume knowledge
of 3-SAT and it being NP-complete. The following example instance illustrates
how to convert any instance of 3-SAT into a Quad-SAT problem:

x2
i = xi ∀1 ≤ i ≤ 1000

y1 = (1− x42) · x17, 0 = y1 · x53

y2 = (1− x19) · (1− x52) 0 = y2 · (1− x75)

y3 = x25 · x64, 0 = y3 · x81

...

(imagine many more such pairs of equations). The xi’s are variables which are
seen to either be 0 or 1. And then each pair of equations with yi corresponds
to a clause of 3-SAT.

So for example, any NP decision problem should be encodable. Still, such a
theoretical reduction might not be usable in practice: Polynomial factors might
not matter in complexity theory, but they do matter a lot to engineers and end
users.

But it turns out that Quad-SAT is actually reasonably codeable. This is
the goal of projects like Circom21, which gives a high-level language that com-
piles a function like SHA-256 into a system of equations over Fq that can be
used in practice. Systems like this are called arithmetic circuits, and Circom is
appropriately short for “circuit compiler”. If you are curious, you can see how
SHA-256 is implemented in Circom on GitHub.22

So, the first step in proving a claim like “I have a message M such that
sha(M) = 0xa91af3ac...” is to translate the claim into a system of quadratic
equations. This process is called “arithmetization.”

One approach (suggested by Remark 4.2) is to represent each bit involved in
the calculation by a variable xi (which would then be constrained to be either
0 or 1 by an equation x2

i = xi). In this setup, the value 0xa91af3ac would
be represented by 32 public bits x1, . . . , x32; the unknown message M would be
represented by some private variables; and the calculation of sha would introduce
a series of constraints, maybe involving some additional variables.

We will not get into any more details of arithmetization here.

4.2.2 An instance of PLONK

PLONK is going to prove solutions to systems of quadratic equations of a very
particular form:

Definition 4.3. An instance of PLONK consists of two pieces, the gate con-
straints and the copy constraints.

21https://docs.circom.io/
22https://github.com/iden3/circomlib/blob/master/circuits/sha256/sha256.circom

33

The gate constraints are a system of n equations,

qL,iai + qR,ibi + qO,ici + qM,iaibi + qC,i = 0

for i = 1, . . . , n, in the 3n variables ai, bi, ci. while the q∗,i are coefficients in Fq,
which are globally known. The confusing choice of subscripts stands for “Left”,
“Right”, “Output”, “Multiplication”, and “Constant”, respectively.

The copy constraints are a bunch of assertions that some of the 3n variables
should be equal to each other, e.g., “a1 = c7”, “b17 = b42”, and so on.

Remark 4.4 (“From Quad-SAT to PLONK”). PLONK might look less general
than Quad-SAT, but it turns out you can convert any Quad-SAT problem to
PLONK.

First off, note that if we set

(qL,i, qR,i, qO,i, qM,i, qC,i) = (1, 1,−1, 0, 0),

we get an “addition” gate ai + bi = ci, while if we set

(qL,i, qR,i, qO,i, qM,i, qC,i) = (0, 0,−1, 1, 0),

we get a “multiplication” gate aibi = ci. Finally, if κ is any constant, then

(qL,i, qR,i, qO,i, qM,i, qC,i) = (1, 0, 0, 0,−κ),

gives the constraint ai = κ.
Now imagine we want to encode some quadratic equation like y = x2 + 2 in

PLONK. We will break this down into two steps:

x · x = (x2) (multiplication)

t = 2 (constant)

(x2) + t = y (addition).

We will assign the variables ai, bi, ci for these two gates by looking at the
equations:

(a1, b1, c1) = (x, x, x2)

(a2, b2, c2) = (t = 2, 0, 0)

(a3, b3, c3) = (x2, t = 2, y).

And finally, we will assign copy constraints to make sure the variables are
faithfully copied from line to line:

a1 = b1

c1 = a3

a2 = b3.

If the variables ai, bi, ci satisfy the gate and copy constraints, then x = a1
and y = c3 are forced to satisfy the original equation y = x2 + 2.

34

Back to PLONK. Our protocol needs to do the following: Peggy and Victor
have a PLONK instance given to them. Peggy has a solution to the system of
equations, i.e., an assignment of values to each ai, bi, ci such that all the gate
constraints and all the copy constraints are satisfied. Peggy wants to prove this
to Victor succinctly and without revealing the solution itself. The protocol then
proceeds by having:

1. Peggy sends a polynomial commitment corresponding to ai, bi, and ci (the
details of what polynomial are described below).

2. Peggy proves to Victor that the commitment from Step 1 satisfies the gate
constraints.

3. Peggy proves to Victor that the commitment from Step 1 also satisfies the
copy constraints.

Let us now explain how each step works.

4.2.3 Step 1: the commitment

In PLONK, we will assume that q ≡ 1(modn), which means that we can fix
ω ∈ Fq to be a primitive n-th root of unity.

Then, by polynomial interpolation, Peggy chooses polynomials A(X), B(X),
and C(X) in Fq[X] such that

A(ωi) = ai, B(ωi) = bi, C(ωi) = ci for all i = 1, 2, . . . , n. (3)

We specifically choose ωi because that way, if we use Algorithm 3.26 on the
set {ω, ω2, . . . , ωn}, then the polynomial called Z is just

Z(X) = (X − ω) · · · (X − ωn) = Xn − 1,

which is really nice. In fact, often n is chosen to be a power of 2 so that A, B,
and C are very easy to compute, using a fast Fourier transform. (Note: When
you are working in a finite field, the fast Fourier transform is sometimes called
the “number theoretic transform” (NTT) even though it is exactly the same as
the usual FFT.)

Then:

Algorithm 4.5 (Commitment step of PLONK).

1. Peggy interpolates A, B, C as in Equation (3).

2. Peggy sends Com(A), Com(B), Com(C) to Victor.

To reiterate, each commitment is a single value – a 256-bit elliptic curve
point – that can later be “opened” at any value x ∈ Fq.

35

4.2.4 Step 2: gate check

Both Peggy and Victor know the PLONK instance, so they can interpolate a
polynomial QL(X) ∈ Fq[X] of degree n− 1 such that

QL(ω
i) = qL,i for i = 1, . . . , n.

The analogous polynomials QR, QO, QM , QC are defined in the same way.
Now, what do the gate constraints amount to? Peggy is trying to convince

Victor that the equation

QL(x)A(x) +QR(x)B(x) +QO(x)C(x) +QM (x)A(x)B(x) +QC(x) = 0 (4)

is true for the n numbers x = ω, ω2, . . . , ωn.
However, Peggy has committed A, B, C already, while all theQ∗ polynomials

are globally known. So this is a direct application of Algorithm 3.26:

Algorithm 4.6 (Gate check).

1. Both parties interpolate five polynomials Q∗ ∈ Fq[X] from the 5n coeffi-
cients q∗ (globally known from the PLONK instance).

2. Peggy uses Algorithm 3.26 to convince Victor that Equation (4) holds for
X = ωi (that is, the left-hand side is indeed divisible by Z(X) := Xn−1).

4.2.5 Step 3: proving the copy constraints

The copy constraints are the trickiest step. There are a few moving parts to
this idea, so we skip it for now and dedicate Section 4.3 to it.

4.2.6 Step 4: public and private witnesses

The last thing to be done is to reveal the value of public witnesses, so the
prover can convince the verifier that those values are correct. This is simply an
application of Algorithm 3.26. Let us say the public witnesses are the values ai,
for all i in some set S. (If some of the b‘s and c‘s are also public, we will just
do the same thing for them.) The prover can interpolate another polynomial,
Apublic, such that Apublic(ωi) = ai if i ∈ S, and Apublic(ωi) = 0 if i /∈ S.
Actually, both the prover and the verifier can compute Apublic, since all the
values ai are publicly known!

Now the prover runs Algorithm 3.26 to prove that A − Apublic vanishes on
S. (And similarly for B and C, if needed.) And we are done.

4.3 Copy constraints in PLONK

Now we elaborate on Step 3 which we deferred back in Section 4.2.5. As an
example, the constraints might be:

a1 = a4 = c4 and b2 = c1.

36

Before we show how to check this, we provide a solution to a “simpler” problem
called “permutation check”. Then we explain how to deal with the full copy
check.

4.3.1 Easier case: permutation check

Problem 4.7. Suppose we have polynomials P,Q ∈ Fq[X] which encode two
vectors of values

→
p = ⟨P (ω1), P (ω2), . . . , P (ωn)⟩
→
q = ⟨Q(ω1), Q(ω2), . . . , Q(ωn)⟩.

Is there a way that one can quickly verify
→
p and

→
q are the same up to permu-

tation of the n entries?

Well, actually, it would be necessary and sufficient for the identity

(T + P (ω1))(T + P (ω2)) · · · (T + P (ωn))

= (T +Q(ω1))(T +Q(ω2)) · · · (T +Q(ωn)) (5)

to be true, in the sense that both sides are the same polynomial in a single
formal variable T . And for that, it is sufficient that a single random challenge
T = λ passes Equation (5): If the two sides of Equation (5) are not the same
polynomial, then the two sides can have at most n − 1 common values. So for
a randomly chosen λ (chosen from a field with q ≈ 2256 elements), the chances
that T = λ passes Equation (5) are extremely small.

We can then get a proof of Equation (5) using the technique of adding an
accumulator polynomial. The idea is this: Victor picks a random challenge
λ ∈ Fq. Peggy then interpolates the polynomial FP ∈ Fq[T] such that

FP (ω
1) = λ+ P (ω1)

FP (ω
2) = (λ+ P (ω1))(λ+ P (ω2))

...

FP (ω
n) = (λ+ P (ω1))(λ+ P (ω2)) · · · (λ+ P (ωn)).

Then the accumulator FQ ∈ Fq[T] is defined analogously.
So to prove Equation (5), the following algorithm works:

Algorithm 4.8 (Permutation check). Suppose Peggy has committed Com(P)
and Com(Q).

1. Victor sends a random challenge λ ∈ Fq.

2. Peggy interpolates polynomials FP [T] and FQ[T] such that FP (ω
k) =∏

i≤k(λ+P (ωi)). Define FQ similarly. Peggy sends Com(FP) and Com(FQ).

3. Peggy uses Algorithm 3.26 to prove all of the following statements:

37

• FP (X)− (λ+ P (X)) vanishes at X = ω;

• FP (ωX)− (λ+ P (ωX))FP (X) vanishes at X ∈ {ω, . . . , ωn−1};
• The previous two statements also hold with FP replaced by FQ;

• FP (X)− FQ(X) vanishes at X = 1.

4.3.2 Copy check

Moving on to copy check, let us look at a concrete example where n = 4.
Suppose that our copy constraints were

(a1) = (a4) = (c4) and (b2) = (c1).

(We have colored the variables that will move around for readability.) So, the
copy constraint means we want the following equality of matrices:

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4

 =


(a4) b1 (b2)
a2 (c1) c2
a3 b3 c3
(c4) b4 (a1)

 . (6)

Again, our goal is to make this into a single equation. There is a really
clever way to do this by tagging each entry with +ηjωkµ in reading order for
j = 0, 1, 2 and k = 1, . . . , n; here η ∈ Fq is any number such that η2 does not
happen to be a power of ω, so all the tags are distinct. Specifically, if Equation
(6) is true, then for any µ ∈ Fq, we also have

a1 + ω1µ b1 + ηω1µ c1 + η2ω1µ
a2 + ω2µ b2 + ηω2µ c2 + η2ω2µ
a3 + ω3µ b3 + ηω3µ c3 + η2ω3µ
a4 + ω4µ b4 + ηω4µ c4 + η2ω4µ



=


(a4)+ ω1µ b1 + ηω1µ (b2)+ η2ω1µ
a2 + ω2µ (c1)+ ηω2µ c2 + η2ω2µ
a3 + ω3µ b3 + ηω3µ c3 + η2ω3µ
(c4)+ ω4µ b4 + ηω4µ (a1)+ η2ω4µ

 .

(7)

Now how can the prover establish Equation (7) succinctly? The answer
is to run a permutation check on the 3n entries of Equation (7)! The prover
will simply prove that the twelve matrix entries of the matrix on the left are a
permutation of the twelve matrix entries of the matrix on the right.

The reader should check that this is correct! If the prover starts with values
ai, bi, and ci that do not satisfy all the copy constraints, then a randomly
selected µ is very unlikely to satisfy this permutation check. The right-hand
side will not be a permutation of the left-hand side, and the check will fail.

38

To clean things up, shuffle the 12 terms on the right-hand side of Equation
(7) so that each variable is in the cell it started at. We want to prove

a1 + ω1µ b1 + ηω1µ c1 + η2ω1µ
a2 + ω2µ b2 + ηω2µ c2 + η2ω2µ
a3 + ω3µ b3 + ηω3µ c3 + η2ω3µ
a4 + ω4µ b4 + ηω4µ c4 + η2ω4µ


is a permutation of

a1 + (η2ω4µ) b1 + ηω1µ c1 + (ηω2µ)
a2 + ω2µ b2 + (η2ω1µ) c2 + η2ω2µ
a3 + ω3µ b3 + ηω3µ c3 + η2ω3µ

a4 + (ω1µ) b4 + ηω4µ c4 + (ω4µ)

 .

(8)

The permutations needed are part of the problem statement, hence glob-
ally known. So in this example, both parties are going to interpolate cubic
polynomials σa, σb, σc that encode the weird coefficients row-by-row:

σa(ω
1) = (η2ω4) σb(ω

1) = ηω1 σc(ω
1) = (ηω2)

σa(ω
2) = ω2 σb(ω

2) = (η2ω1) σc(ω
2) = η2ω2

σa(ω
3) = ω3 σb(ω

3) = ηω3 σc(ω
3) = η2ω3

σa(ω
4) = (ω1) σb(ω

4) = ηω4 σc(ω
4) = (ω4)

 .

Then the prover can start defining accumulator polynomials, after re-introducing
the random challenge λ from permutation check. We are going to need six in
all, three for each side of Equation (8): We call them Fa, Fb, Fc, F

′
a, F

′
b, F

′
c.

The ones on the left-hand side are interpolated so that

Fa(ω
k) =

∏
i≤k

(ai + ωiµ+ λ)

Fb(ω
k) =

∏
i≤k

(bi + ηωiµ+ λ)

Fc(ω
k) =

∏
i≤k

(ci + η2ωiµ+ λ),

(9)

while the ones on the right have the extra permutation polynomials

F ′
a(ω

k) =
∏
i≤k

(ai + σa(ω
i)µ+ λ)

F ′
b(ω

k) =
∏
i≤k

(bi + σb(ω
i)µ+ λ)

F ′
c(ω

k) =
∏
i≤k

(ci + σc(ω
i)µ+ λ).

(10)

And then we can run essentially the algorithm from before. There are six

39

initialization conditions

Fa(ω
1) = A(ω1) + ω1µ+ λ

Fb(ω
1) = B(ω1) + ηω1µ+ λ

Fc(ω
1) = C(ω1) + η2ω1µ+ λ

F ′
a(ω

1) = A(ω1) + σa(ω
1)µ+ λ

F ′
b(ω

1) = B(ω1) + σb(ω
1)µ+ λ

F ′
c(ω

1) = C(ω1) + σc(ω
1)µ+ λ.

(11)

and six accumulation conditions

Fa(ωX) = Fa(X) · (A(ωX) +Xµ+ λ)

Fb(ωX) = Fb(X) · (B(ωX) + ηXµ+ λ)

Fc(ωX) = Fc(X) · (C(ωX) + η2Xµ+ λ)

F ′
a(ωX) = F ′

a(X) · (A(ωX) + σa(X)µ+ λ)

F ′
b(ωX) = F ′

b(X) · (B(ωX) + σb(X)µ+ λ)

F ′
c(ωX) = F ′

c(X) · (C(ωX) + σc(X)µ+ λ)

(12)

before the final product condition

Fa(1)Fb(1)Fc(1) = F ′
a(1)F

′
b(1)F

′
c(1). (13)

To summarize, the copy check goes as follows:

Algorithm 4.9 (Copy check).

0. Peggy has already sent the three commitments Com(A),Com(B),Com(C)
to Victor; these commitments bind her to the values of all the variables
ai, bi, and ci.

1. Both parties compute the degree n − 1 polynomials σa, σb, σc ∈ Fq[X]
described above, based on the copy constraints in the problem statement.

2. Victor chooses random challenges µ, λ ∈ Fq and sends them to Peggy.

3. Peggy interpolates the six accumulator polynomials Fa, . . . , F
′
c defined in

Equation (9) and Equation (10).

4. Peggy uses Algorithm 3.26 to prove Equation (11) holds.

5. Peggy uses Algorithm 3.26 to prove Equation (12) holds forX ∈ {ω, ω2, . . . , ωn−1}.

6. Peggy uses Algorithm 3.26 to prove Equation (13) holds.

40

4.4 Making it non-interactive: Fiat-Shamir

As we described it, PLONK is an interactive protocol. Peggy sends Victor some
data; Victor reads that data and sends back a random challenge. Peggy sends
back some more data; Victor replies with more challenges. After a few rounds
of this, the protocol is complete, and Victor is convinced of the truth of Peggy’s
claim.

We want to turn this into a non-interactive protocol. Peggy sends Victor
some data once. Victor reads the data, does some calculation, and convinces
himself of the truth of Peggy’s claim.

We will do this using a general trick, called the “Fiat-Shamir heuristic.”
Let us step back and philosophize for a moment. Why does Victor need to

send challenges at all? This is actually what makes the whole SNARK thing
work. Peggy condenses a long calculation down into a very short proof, which
she sends to Victor. What keeps her from cheating is that she has to be prepared
to respond to any challenge Victor could possibly send back. If Peggy knew
what challenge Victor was going to send, Peggy could use that foreknowledge to
create a false proof. But by sending a random challenge after Peggy’s original
commitment, Victor prevents her from adapting her proof to the challenge.

The idea of Fiat and Shamir is to replace Victor’s random number generator
with a (cryptographically secure) hash function. Instead of interacting with
Victor, Peggy simply runs this hash function to generate the challenge for each
round.

For example, consider the following (slightly simplified) version of Algorithm
3.26.

Algorithm 4.10. Peggy wants to prove to Victor that two polynomials F
and H (known only to Peggy) satisfy F (X) = Z(X)H(X), where Z(X) =∏

z∈S(X − z) is a fixed polynomial known to both Peggy and Victor.

1. Peggy sends Com(F) and Com(H).

2. Victor picks a random challenge λ ∈ Fq

3. Peggy opens both Com(F) and Com(H) at λ.

4. Victor verifies F (λ) = Z(λ)H(λ).

Fiat-Shamir turns it into the following noninteractive protocol.

Algorithm 4.11. Peggy wants to prove to Victor that two polynomials F
and H (known only to Peggy) satisfy F (X) = Z(X)H(X), where Z(X) =∏

z∈S(X − z) is a fixed polynomial known to both Peggy and Victor.

1. Peggy sends Com(F) and Com(H).

2. Peggy computes λ ∈ Fq by λ = hash(Com(F),Com(H)).

3. Peggy opens both Com(F) and Com(H) at λ.

41

4. Victor verifies that λ = hash(Com(F),Com(H)) and F (λ) = Z(λ)H(λ).

We can apply the Fiat-Shamir heuristic to the full PLONK protocol. Now
Peggy can write the whole proof herself (without waiting for Victor’s challenges),
and publish it. Victor can then verify the proof at leisure.

4.5 SNARK takeaways

1. A SNARK can be used to succinctly prove that a piece of computation
has been done correctly; specifically, it proves to some Verifier that the
Prover had the K(nowledge) of some information that worked as feasible
inputs to some computational circuit.

2. The arithmetization of the circuit is a way of converting circuits to arith-
metic. Specifically for PLONK (but also other SNARKs, e.g., Groth16),
our arithmetization is systems of quadratic equations over Fq, meaning
that what PLONK does under the hood is prove that a system of these
equations are satisfied.

3. The work under the hood of PLONK comes down to polynomial com-
mitments (specifically KZG). KZG allows PLONK’s gate checks and copy
checks.

4. The N(oninteractivity) of SNARKs basically come down to the Fiat-
Shamir heuristic, which is very common in this field. Generally speak-
ing, the “meat” of zkSNARKs are mostly about S(uccinctness) of the
AR(guments).

42

5 Fully Homomorphic Encryption

Brian Lawrence and Yan X Zhang

5.1 FHE and leveled FHE

Alice has a secret x, and Bob has a function f . They want to compute f(x).
Actually, Alice wants Bob to compute f(x) – but she does not want to tell
him x. What Alice wants is a fully homomorphic encryption (FHE) protocol,
meaning:

1. Alice encrypts x and sends Bob Enc(x).

2. Bob then “applies f to the ciphertext” and obtains Enc (f(x)), sending it
to Alice.

3. Alice decrypts Enc (f(x)) to learn f(x).

Leveled FHE is a weaker version of FHE. Like FHE, leveled FHE lets you
perform operations on encrypted data. But unlike FHE, there will be a limit on
the number of operations you can perform before the data must be decrypted.

Why is there a limit? Loosely speaking, the encryption procedure will involve
some sort of “noise” or “error.” As long as the error is not too big, the message
can be decoded without trouble. But each operation on the encrypted data
will cause the error to grow — and if it grows beyond some maximum error
tolerance, the message will be lost. So there is a limit on how many operations
you can do before the error gets too big.

As a sort of silly example, imagine your message is a whole number between
0 and 10 (so it is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), and your “encryption
scheme” encrypts the message as a real number that is very close to the message,
and decrypts a real number by “round to the nearest integer.” So, the message
2 might be encrypted as 1.999832.

(You might be thinking: This is some pretty terrible cryptography, because
the message is not secure. Anyone can figure out how to round a number, no
secret key required. Yep, you are right. The full scheme (Section 5.3) is more
complicated. But it still has this “rounding-off-errors” feature, and that is what
we want to focus on right now.)

Now imagine that the main operation you want to perform is addition (op-
tionally, say, modulo 11). Well, every time you add two encrypted numbers
(1.999832+ 2.999701 = 4.999533), the errors add as well. After too many oper-
ations, the error will exceed 0.5, and the rounding procedure will not give the

43

right answer anymore. But as long as you are careful not to go over the error
limit, you can add ciphertexts with confidence.

For our leveled FHE protocol, our message will be a bit (either 0 or 1) and
our operations will be the logic gates AND and NOT. Because any logic circuit
can be built out of AND and NOT gates, we will be able to perform arbitrary
calculations within the FHE encryption.

Our protocol uses a cryptosystem built from a problem called “learning with
errors.” “Learning with errors” is kind of a strange name; it would make more
sense to call it “approximate linear algebra modulo q.” Anyway, we will start
with the learning-with-errors problem (Section 5.2) and how to build cryptog-
raphy on top of it (Section 5.3) before we get back to leveled FHE.

5.2 A hard problem: learning with errors

As we have seen (Section 3.1), a lot of cryptography relies on hard math prob-
lems. RSA is based on the difficulty of integer factorization; elliptic curve
cryptography depends on the discrete log assumption.

Our protocol for leveled FHE relies on a different hard problem: the learning
with errors problem (LWE). The problem is to solve systems of linear equations,
except that the equations are only approximately true – they permit a small
“error” – and instead of solving for rational or real numbers, you are solving for
integers modulo q.

5.2.1 A small example of an LWE problem

Here is a concrete example of an LWE problem and how one might attack it
“by hand.” This exercise will make the inherent difficulty of the problem quite
intuitive.

Problem 5.1. We are working over F11, and there is some secret vector a =
(a1, . . . , a4). There are two sets of claims. Each claim “(x1, . . . , x4) : y” pur-
ports the relationship

y = a1x1 + a2x2 + a3x3 + a4x4 + ε, ε ∈ {0, 1}.

(The ε is different from equation to equation.)
One of the sets of claims is “genuine” and comes from a consistent set of

ai, while the other set is “fake” and has randomly generated y values. Tell them
apart and find the correct secret vector (a1, . . . , a4).

44

Blue Set Red Set

(1, 0, 1, 7) : 2 (5, 4, 5, 2) : 2
(5, 8, 4, 10) : 2 (7, 7, 7, 8) : 5
(7, 7, 8, 5) : 3 (6, 8, 2, 2) : 0

(5, 1, 10, 6) : 10 (10, 4, 4, 3) : 1
(8, 0, 2, 4) : 9 (1, 10, 8, 6) : 6
(9, 3, 0, 6) : 9 (2, 7, 7, 4) : 4
(0, 6, 1, 6) : 9 (8, 6, 6, 9) : 1
(0, 4, 9, 7) : 5 (10, 6, 1, 6) : 9

(10, 7, 4, 10) : 10 (3, 1, 10, 9) : 7
(5, 5, 10, 6) : 9 (2, 4, 10, 3) : 7
(10, 7, 3, 1) : 9 (10, 4, 6, 4) : 7
(0, 2, 5, 5) : 6 (8, 5, 7, 2) : 5
(9, 10, 2, 1) : 3 (4, 7, 0, 0) : 8
(3, 7, 2, 1) : 6 (0, 3, 0, 0) : 0
(2, 3, 4, 5) : 3 (8, 3, 2, 7) : 5
(2, 1, 6, 9) : 3 (4, 6, 6, 3) : 1

(Solution sketch; can be skipped safely.) One way to start would be
to define an information vector

(x1, x2, x3, x4|y|S),

where S ⊂ F11, to mean the statement∑
aixi = y + s, where s ∈ S.

In particular, a purported approximation (x1, x2, x3, x4) : y in the LWE protocol
corresponds to the information vector

(x1, x2, x3, x4|y|{0,−1}).

The benefit of this notation is that we can take linear combinations of them.
Specifically, if (X1|y1|S1) and (X2|y2|S2) are information vectors (where Xi are
vectors), then

(αX1 + βX2|αy1 + βy2|αS1 + βS2),

where αS = {αs|s ∈ S} and S + T = {s+ t|s ∈ S, t ∈ T}.
We can observe the following:

1. If we obtain two vectors (X|y|S1) and (X|y|S2), then we have the infor-
mation (assuming the vectors are accurate) (X|y|S1 ∩ S2). So if we are
lucky enough, say, to have |S1 ∩ S2| = 1, then we have found an exact
equation with no error.

2. As we linearly combine vectors, their “error part” S gets bigger exponen-
tially. So we can only add vectors very few times, ideally just one or two
times, before they start being unusable.

45

With these heuristics, we can start by looking at the Red Set, and make
vectors with many 0’s in the same places.

1. Our eyes are drawn to the juicy-looking (0, 3, 0, 0|0|{0,−1}), which imme-
diately gives a2 ∈ {0, 7}.

2. (4, 7, 0, 0|8|{0,−1}) gives 4a1 + 7a2 ∈ {7, 8}. Also, since 7a2 ∈ {0, 5},

4a1 ∈ {7, 8} − {0, 5} = {7, 8, 2, 3},

and a1 ∈ {10, 2, 6, 9}.

3. Adding
(10, 4, 4, 3|1|{0,−1}) + (7, 7, 7, 8|5|{0,−1})

gives (6, 0, 0, 0|6|{0,−1,−2}), which is nice because it has 3 zeroes! This
gives a1 ∈ {1, 8, 10}. Combining with (2), we conclude that a1 = 10.

4. . . .

We omit the rest of the solution, which makes for some fun tinkering.

5.2.2 General problem

The LWE problem (Problem 5.2), like the discrete log assumption, is one of
those “hard problems that you can build cryptography on.” The problem is to
solve for constants

a1, . . . , an ∈ Z/qZ,

given a bunch of approximate equations of the form

y = a1x1 + · · ·+ anxn + ϵ,

where each ϵ is a “small” error (for simplicity, say in {0, 1}).

5.3 Public-key cryptography from LWE

In Section 5.2.1 we saw how even a small case of this problem (q = 11, n = 4)
can be annoyingly tricky. In the real world, you should imagine that n and q
are much bigger – maybe n is in the range 100 ≤ n ≤ 1000, and q could be
anywhere from n2 to 2

√
n, say.

As an example of how LWE can be used, let us see how to turn LWE into a
public-key cryptosystem. We will use the same numbers from the “blue set” in
Section 5.2.1. In fact, that “blue set” will be exactly the public key.

46

Public Key

(1, 0, 1, 7) : 2
(5, 8, 4, 10) : 2
(7, 7, 8, 5) : 3

(5, 1, 10, 6) : 10
(8, 0, 2, 4) : 9
(9, 3, 0, 6) : 9
(0, 6, 1, 6) : 9
(0, 4, 9, 7) : 5

(10, 7, 4, 10) : 10
(5, 5, 10, 6) : 9
(10, 7, 3, 1) : 9
(0, 2, 5, 5) : 6
(9, 10, 2, 1) : 3
(3, 7, 2, 1) : 6
(2, 3, 4, 5) : 3
(2, 1, 6, 9) : 3

The private key is simply the vector a.

Private Key

a = (10, 8, 10, 10)

Since the LWE problem is hard, we can release the public key to everybody,
and they will not be able to determine the private key.

5.3.1 Encryption

Suppose you have a message m ∈ {0, 5}. (You will see in a moment why we
insist that m is one of these two values.) The ciphertext to encrypt m will be a
pair (x : y), where x is a vector, y is a scalar, and x · a+ ϵ = y +m, where ϵ is
“small”.

How to do the encryption? If you are trying to encrypt, you only have access
to the public key – that list of pairs (x : y) above. You want to make up your
own x, for which you know approximately the value x · a. You could just take
one of the vectors x from the table, but that would not be very secure: If I see
your ciphertext, I can find that x in the table and use it to decrypt m.

Instead, you are going to combine several rows of the table to get your vector
x. Now you have to be careful: When you combine rows of the table, the errors
will add up. We are guaranteed that each row of the table has ϵ either 0 or
1. So if you add at most four rows, then the total ϵ will be at most 4. Since
m is either 0 or 5 (and we are working modulo q = 11), that is just enough to
determine m uniquely.

So, here is the method. You choose at random four (or fewer) rows of the
table, and add them up to get a pair (x : y0) with x · a ≈ y0. Then you take
y = y0 −m (mod q = 11 of course), and send the message (x : y).

47

5.3.2 An example

Let us say you randomly choose the four rows:

Some rows of public key

(1, 0, 1, 7) : 2
(5, 8, 4, 10) : 2
(7, 7, 8, 5) : 3

(5, 1, 10, 6) : 10

Now you add them up to get the following.

x : y0

(7, 5, 1, 6) : 6

(For reference, the actual value is 4, so our accumulated error is 2.)
Finally, let us say your message is m = 5. So you set y = y0−m = 6−5 = 1,

and send the ciphertext:

x : y

(7, 5, 1, 6) : 1

5.3.3 Decryption

Decryption is easy! The decryptor knows

x · a+ ϵ = y +m

where 0 ≤ ϵ ≤ 4.
Plugging in x and a, the decryptor computes

x · a = 4.

Plugging in y = 1, we see that

4 + ϵ = 1 +m.

Now it is a simple “rounding” problem. We know that ϵ is small and positive,
so 1+m is either 4 or . . . a little more. (In fact, it is one of 4, 5, 6, 7, 8.) On the
other hand, since m is 0 or 5, 1+m had better be 1 or 6, so the only possibility
is that m = 5 (so 1 +m = 6).

5.3.4 How does this work in general?

In practice, n and q are often much larger. Maybe n is in the hundreds, and q
could be anywhere from “a little bigger than n” to “almost exponentially large
in n,” say q = 2

√
n. In fact, to do FHE, we are going to want to take q pretty

big, so you should imagine that q ≈ 2
√
n.

48

For security, instead of adding 4 rows of the public key, we want to add at
least log(qn) = n log q rows. To be safe, maybe a little bigger, say N = 2n log q
(of course, for this to work, the public key has to have at least N rows). The
encryption algorithm will be “select some subset of the rows at random, and
add them up”.

Combining N rows will have the effect of multiplying the error by N , so if
the initial ϵ was bounded by 1, then the error in the ciphertext will be at most
N . But remember that q is exponentially large compared to N and n anyway,
so a mere factor of N should not scare us!

To generalize our choice of m in {0, 5}, we could encode a single bit by using
either 0 or ⌊ q2⌋ to obtain maximum separation and thus tolerance to error.
Alternatively, we could allow the message to be any multiple of some constant
r, where r is bigger than the error bound, which allows you to encode a message
space of size q/r rather than just a single bit.

When we do FHE, we are going to apply many operations to a ciphertext,
and each is going to cause the error to grow. We are going to have to put some
effort into keeping the error under control, and the size of q/r will determine
how many operations we can do before the error grows too big.

5.4 Leveled FHE from LWE

5.4.1 The main idea: approximate eigenvalues

Now we want to turn the public-key encryption from Section 5.3 into a leveled
FHE scheme. In other words: We want to be able to encrypt bits (0s and 1s)
and operate on them with AND and NOT gates.

It might help to imagine that, instead of AND and NOT, the operations we
want to encrypt are addition and multiplication. If x and y are bits, then NOT
x is just 1 − x, and x AND y is just xy. But it is easier to do algebra with +
and ×.

Recall the setup from Section 5.3: We are going pick some large integer q (in
practice q could be anywhere from a few thousand to 21000), and do “approxi-
mate linear algebra” modulo q. In other words, we will do linear algebra, where
all our calculations are done modulo q – but we will also allow the calculations
to have a small “error” ϵ, which will typically be much, much smaller than q.

As before, our secret key will be a vector of length n:

v = (v1, . . . , vn) ∈ (Z/qZ)n.

Suppose we want to encode a message µ that is just a single bit, let us say
µ ∈ {0, 1}. Our ciphertext will be a square n-by-n matrix C such that

Cv ≈ µv.

Now if we assume that v has at least one “big” entry (say vi), then decryption
is easy: just compute the i-th entry of Cv, and determine whether it is closer
to 0 or to vi.

49

Remark 5.2. With a bit of effort, it is possible to make this into a public-key
cryptosystem too. Just like in Section 5.3, the main idea is to release a table of
vectors x such that

x · v ≈ 0,

and use that as a public key. Given µ and the public key, you can find a matrix
C0 such that

C0v ≈ 0

then take
C = C0 + µId,

where Id is the identity matrix. This gives a C such that

Cv ≈ µv.

Problem 5.3. How do we build such a C0? (One possible direction is to build
it row-by-row.)

5.4.2 Operations on encrypted data

To make homomorphic encryption work, we need to explain how to operate on
µ. We will describe three operations: addition, NOT, and multiplication (aka
AND).

Addition is simple: just add the matrices. If C1v ≈ µ1v and C2v ≈ µ2v,
then

(C1 + C2)v = C1v + C2v ≈ µ1v + µ2v = (µ1 + µ2)v.

Of course, addition on bits is not a great operation, because if you add 1 + 1,
you get 2, and 2 is not a legitimate bit anymore. So we will not really use this.

Negation of a bit (NOT) is equally simple. If µ ∈ {0, 1} is a bit, then its
negation is simply 1 − µ. And if C is a ciphertext for µ, then Id − C is a
ciphertext for 1− µ, since

(Id− C)v = v − Cv ≈ (1− µ)v.

Multiplication is also a good operation on bits – it is just AND. To multiply
two bits, you just multiply (matrix multiplication) the ciphertexts:

C1C2v ≈ C1(µ2v) = µ2C1v ≈ µ2µ1v = µ1µ2v.

At this point you might be concerned about this symbol ≈ and what happens
to the size of the error. That is an important issue, and we will resolve it with
the help of a special operation called “Flatten.”

Anyway, once you have AND and NOT, you can build arbitrary logic gates
– and this is what we mean when we say you can perform arbitrary calculations
on your encrypted bits, without ever learning what those bits are. At the end
of the calculation, you can send the resulting ciphertexts back to be decrypted.

50

5.4.3 The “Flatten” operation

In order to make the error estimates work out, we are going to need to make it
so that all the ciphertext matrices C have “small” entries. In fact, we will be
able to make it so that all entries of C are either 0 or 1.

To make this work, we will assume our secret key v has the special form

v = (a1, 2a1, 4a1, . . . , 2
ka1,

a2, 2a2, 4a2, . . . , 2
ka2,

. . . ,

ar, 2ar, 4ar, . . . , 2
kar) (14)

where k = ⌊log2 q⌋.
To see how this helps us, try the following puzzle. Assume q = 11 (so all our

vectors have entries modulo 11), and r = 1, so our secret key has the form

v = (a1, 2a1, 4a1, 8a1).

You know v has this form, but you do not know the specific value of a1.
Now suppose we give you the vector

x = (9, 0, 0, 0).

We ask you for another vector

Flatten(x) = x′,

where x′ has to have the following two properties:

• x′ · v = x · v, and

• All the entries of x′ are either 0 or 1.

And you have to find this vector x′ without knowing a1.
The solution is to use binary expansion: take x′ = (1, 0, 0, 1). You should

check for yourself to see why this works – it boils down to the fact that (1, 0, 0, 1)
is the binary expansion of 9.

Problem 5.4. How would you flatten a different vector, like

x = (9, 3, 1, 4)?

As a hint, remember we are working with numbers modulo 11: So if you come
across a number that is bigger than 11 in your calculation, it is safe to reduce
it mod 11.

In general, if you know that v has the form in Equation (14) and you are
given some matrix C with coefficients in Z/qZ, then you can compute another
matrix Flatten(C) such that:

51

• Flatten(C)v = Cv, and

• All the entries of Flatten(C) are either 0 or 1.

The Flatten process is essentially the same binary-expansion process we used
above to turn x into x′, applied to each k + 1 entries of each row of the matrix
C.

So now, using this Flatten operation, we can insist that all of our ciphertexts
C are matrices with coefficients in {0, 1}. For example, to multiply two messages
µ1 and µ2, we first multiply the corresponding ciphertexts, then flatten the
resulting product:

Flatten(C1C2).

Of course, revealing that the secret key v has this special form will degrade
security. This cryptosystem is as secure as an LWE problem on vectors of length
r, not n. So we need to make n bigger, say n ≈ r log q, to get the same level of
security.

5.4.4 Error analysis

Now let us compute more carefully what happens to the error when we add,
negate, and multiply bits. Suppose

C1v = µ1v + ε1,

where ε1 is some vector with all its entries bounded by some B. (And similarly
for C2 and µ2.)

When we add two ciphertexts, the errors add:

(C1 + C2)v = (µ1 + µ2)v + (ε1 + ε2).

So the error on the sum will be bounded by 2B.
Negation is similar to addition – in fact, the error will not change at all.
Multiplication is more complicated, and this is why we insisted that all

ciphertexts have entries in {0, 1}. We compute

C1C2v = C1(µ2v + ε2) = µ1µ2v + (µ2ε1 + C1ε2).

Now since µ2 is either 0 or 1, we know that µ2ε1 is a vector with all entries
bounded by B. What about C1ε2? Here we have to think carefully about matrix
multiplication: When you multiply an n-by-n matrix by a vector, each entry of
the product comes as a sum of n different products. Now we are assuming that
C1 is a 0-1 matrix, and all entries of ε2 are bounded by B. . . so the product
has all entries bounded by nB. Adding this to the error for µ2ε1, we get that
the total error in the product C1C2v is bounded by (n+ 1)B.

In summary: We can start with ciphertexts having a very small error (if you
think carefully about this protocol, you will see that the error is bounded by
approximately n log q). Every addition operation will double the error bound;

52

every multiplication (AND gate) will multiply it by (n + 1). And you cannot
allow the error to exceed q/2 – otherwise the message cannot be decrypted. So
you can perform calculations of up to approximately logn q steps. (In fact, it
is a question of circuit depth: You can start with many more than logn q input
bits, but no bit can follow a path of length greater than logn q AND gates.)

This gives us a leveled FHE protocol: It lets us evaluate arbitrary circuits
on encrypted data, as long as those circuits have bounded depth. If we need to
evaluate a bigger circuit, we have two options:

1. Increase the value of q. Of course, the cost of the computations increases
with q.

2. Use some technique to “reset” the error and start anew, as if with a freshly
encrypted ciphertext. This approach is called bootstrapping and it incurs
some hefty computational costs. But for large circuits, it is the only viable
option. Bootstrapping is beyond the scope of this book.

5.5 FHE takeaways

1. A fully homomorphic encryption protocol allows Bob to compute some
function f(x) for Alice in a way that Bob does not get to know x or f(x).

2. The hard problem backing known FHE protocols is the learning with errors
(LWE) problem, which comes down to deciding if a system of “approxi-
mate equations” over Fq is consistent.

3. The main idea of this approach to FHEs is to use “approximate eigen-
values” as the encrypted computation and an “approximate eigenvector”
as the secret key. Intuitively, adding and multiplying two matrices with
different approximate eigenvalues for the same eigenvector approximately
adds and multiplies the eigenvalues, respectively.

4. To carefully do this, we actually need to control the error blowup with the
flatten operation. This creates a leveled FHE protocol.

53

6 Oblivious RAM

Elaine Shi

To motivate Oblivious RAM, let us think of Signal’s usage scenario. Signal
is an encrypted messenger app with billions of users. They want to support a
private contact discovery application. In contact discovery, a user Alice sends
her address book to Signal, and Signal will look up its user database and return
Alice the information about her friends. The problem is that many users want to
keep their address book private, and Signal wants to provide contact discovery
without learning the users’ contacts.

A naive solution is to rely on trusted hardware. Suppose Signal has a secure
processor (like Intel SGX) on its server. One can think of the secure processor
as providing a hardware sandbox (often referred to as an enclave). Now, Alice
sends her address book in encrypted format to the server’s enclave; further, the
server’s database is also encrypted as it is stored in memory and on disk. Now,
the enclave has a secret key that can decrypt the data and perform computation
inside. At first sight, this seems to solve the privacy problem, since data is always
encrypted in transit and at rest, and the server cannot see the contents.

Unfortunately, encryption alone provides little privacy in such scenarios. The
enclave will need to access encrypted entries stored on disk, and the server’s
operating system can easily observe the access patterns, i.e., which memory
pages are being fetched by the enclave. The access patterns leak exactly who
Alice’s friends are even if the data is encrypted!

In general, access patterns of a program leak sensitive information about
your private data. As a simpler example, if you are performing binary search
over a sorted array, the entries accessed during the search would leak your
private query.

We can also think of access pattern leakage through a programming language
perspective. For example, the following program has an if-branch dependent
on secret inputs. (Maybe the secret input is the last bit of a secret key). By
observing whether memory location x or y is accessed, one can infer which
branch is taken.

if (s) {

mem[x]

} else {

mem[y]

}

Therefore, we want to solve the following challenge:

How can we provably hide access patterns while preserving efficiency?

54

The solution Signal eventually deployed is an algorithmic technique called
Oblivious RAM (ORAM).

6.1 Oblivious RAM: problem definitions

Oblivious RAM (ORAM) is a powerful cryptographic protocol that provably
hides access patterns to sensitive data.

We would like to ensure a very strong notion of security. In particular, no
information should be leaked about: 1) which data block is being accessed; 2)
the age of the data block (when it was last accessed); 3) whether a single block is
being requested repeatedly (frequency); 4) whether data blocks are often being
accessed together (co-occurrence); or 5) whether each access is a read or a write.

Let us explain the parts of an ORAM system.
An ORAM algorithm (the client) sits between a user who wants to access

memory and a server that has memory capabilities. At the server-ORAM in-
terface, the server simply acts as a memory: The ORAM client sends read and
write requests to the server, and the server responds. Between the ORAM and
the user, the user submits logical read and write requests to the ORAM client,
and the client will reply to each (after interaction with the server).

We will call physical memory the memory that the server manages, and
logical memory the memory the user wants to access. Memory, both physical
and logical, will be made up of “blocks”; our ORAM algorithm will support N
blocks of logical memory.

Formally, the user sends to the algorithm a sequence of logical requests,
where each logical request is of the form (read, addr) or (write, addr, data).

After each user request, the ORAM algorithm interacts with the server to
make a sequence of physical memory accesses, where each physical access either
reads or writes a block to a physical location.

And finally, the ORAM algorithm turns back to the user and returns an
answer to the logical request.

For example, in Signal’s scenario, the “user” and the “ORAM client” are
both in the hardware enclave, and the “ORAM server” is the untrusted memory
and disk on Signal’s server.

The security requirement for ORAM is that the server should learn nothing
about the user’s logical memory requests from observing the sequence of physical
memory requests. For any two logical request sequences, the ORAM’s resulting
physical access sequences will be indistinguishable.

Remark 6.1. In this security requirement, we require that the server learn
nothing from observing only the list of physical addresses, and whether each
physical access is a read or write. We do not say anything about the data that
is written to physical memory.

In practice, we need to use encryption to hide the contents of the blocks. If
we read a block and then write it back, we should re-encrypt it with a different
ciphertext, or else the server would recognize it as the same block.

55

From now on we will simply assume secure encryption as given, and focus
on hiding the access patterns.

6.2 Naive solutions

6.2.1 Naive solution 1

One trivial solution is for the client to read all blocks from the server upon every
logical request. Obviously this scheme leaks nothing but would be prohibitively
expensive.

6.2.2 Naive solution 2

Another trivial solution is for the client to store all blocks, and thus the client
need not access the server to answer any memory request. But this defeats
the numerous advantages of cloud outsourcing in the first place. Henceforth,
we require that client store only a small amount of blocks (maybe constant or
polylogarithmic in N).

6.2.3 Naive solution 3

Another naive idea is to randomly permute all memory blocks through a secret
permutation known only to the client. Whenever the client wishes to access a
block, it will appear to the server to reside at a random location.

Indeed, this scheme gives a secure one-time ORAM scheme: It provides
security if every block is accessed only once. However, if the client needs to
access each block multiple times, then the access patterns will leak statistical
information such as frequency (how often the same block is accessed) and co-
occurrence (how likely two blocks are accessed together). As mentioned earlier,
one can leverage23 such statistical information to infer sensitive secrets.

6.2.4 Important observation

The above naive solution 3 gives us the following useful insight: Informally, if we
want a “non-trivial” ORAM scheme, it appears that we may have to relocate a
block after it is accessed — otherwise, if the next access to the same block goes
back to the same location, we can thus leak statistical information. It helps to
keep this observation in mind when we describe our ORAM scheme later.

6.3 Binary-tree ORAM: data structure

We will learn about tree-based ORAMs. Then, we will mention an improvement
called Path ORAM,24 which is the scheme that Signal has deployed.

23https://www.ndss-symposium.org/wp-content/uploads/2017/09/06 1.pdf
24https://eprint.iacr.org/2013/280.pdf

56

6.3.1 Server data structure

The server stores a binary tree with N leaves. (If necessary, replace N with the
next larger power of 2.)

Each node is called a bucket, and each bucket is a finite array that can hold
up to Z number of blocks — for now, think of Z as being relatively small (maybe
polylogarithmic in N); we will describe how to parametrize Z later. Some of
the blocks stored by the server are real ; other blocks are dummy. As will be
clear later, these dummy blocks are introduced for security: We do not want
the server to learn which buckets hold real blocks.

6.3.2 Main path invariant

The most important invariant is that at any point of time, each block is mapped
to a random path in the tree (also referred to as the block’s designated path),
where a path begins from the root and ends at some leaf node — and thus a
path can be specified by the corresponding leaf node’s identifier. When a block
is mapped to a path, it means that the block can legitimately reside anywhere
along the path.

6.3.3 Imaginary position map

For the time being, we will rely on the following cheat (an assumption that
we can get rid of later). We assume that the client can store a somewhat large
position map that records the designated path of every block. In general, such a
position map would require roughly Θ(N logN) bits to store — but later we can
recursively outsource the storage of the position map to the server by placing
position maps in progressively smaller ORAMs.

6.4 Binary-tree ORAM: operations

We now describe how to access blocks in our ORAM scheme.

6.4.1 Fetching a block

Given how our data structures are set up, accessing a block is very easy: the
client simply looks up its local position map, finds out on which path the block
is residing, and then reads each and every block on the path. As long as the
main invariant is respected, the client is guaranteed to find the desired block.

6.4.2 Remapping a block

Recall that earlier, we have gained the informal insight that whenever a block is
accessed, it should relocate. Here, whenever we access a block, we must remap it
to a randomly chosen new path — otherwise, we would end up going back to the
same path if the block is requested again, thus leaking statistical information.

57

To remap the block, we choose a fresh new path, and we update the client’s
position map to associate the new path with the block. We now would like
to write this block back to the tree, to somewhere on the new path (and if
the request is a write request, the block’s contents are updated before being
written back to the server). But doing this is tricky! It turns out that we cannot
write the block back directly to the leaf bucket of the new path, since doing so
would reveal which new path the block got assigned to. For the same reason,
we cannot write this block back to any internal nodes of the new path either,
since writing to any internal node on the new path also leaks partial information
about the new path.

It turns out that the only safe location to write the block back is to the root
bucket! The root bucket resides on every path, and thus writing the block back
to the root does not violate the main path invariant; and further, it does not
leak any information about the new path.

Now this is great. Our idea thus is to write this block back to the root
bucket. However, there is also an obvious problem. The root bucket has a
capacity of Z, and if we keep writing blocks back to the root, soon enough the
root bucket will overflow! Therefore, we now introduce a new procedure called
eviction to cope with this problem.

6.4.3 Eviction

Eviction is a maintenance operation performed upon every data access to ensure
that none of the buckets in the ORAM tree will ever overflow except with
negligible in N failure probability. Note that if an overflow does happen, the
block that leads to the overflow can get lost since there is no space to hold it on
the server, and this can affect the correctness of our ORAM scheme. However,
we will guarantee that such correctness failure happens only with negligible
probability.

The high-level idea is very simple: Whenever we can, we will try to move
blocks in the tree closer to the leaves, to allow space to free up in smaller levels
of the tree (levels closer to the root). There are a few important considerations
when performing such eviction:

• Data movement during eviction must respect the main path invariant:
Each block can only be moved into buckets in which it can legitimately
reside.

• Data movement during eviction must retain obliviousness: The physical
locations accessed during eviction should be independent of the input re-
quests to the ORAM.

• As we perform eviction, we pay a cost for this maintenance operation and
the cost is charged to each data access. Obviously, if we are willing to pay
more such cost, we can pack blocks closer to the leaves, thus leaving more
room in smaller levels. In this way, overflows are less likely to happen.

58

Figure 1: The Evict algorithm. Upon every data access operation, two buckets
are chosen at every level of the tree for eviction during which one data block
will be evicted to one of its children. To ensure security, a dummy eviction
is performed for the child that does not receive a block; further, if the bucket
chosen for eviction is empty, dummy evictions are performed on both child
buckets. In this figure, R denotes a real eviction and D denotes a dummy
eviction.

On the other hand, we also do not want the eviction cost to be too ex-
pensive. Therefore, another tricky issue is how we can design an eviction
algorithm that achieves the best of both worlds: With a small number of
eviction operations, we want to keep the probability of overflow very small
(technically: negligible in N).

We describe a simple candidate eviction scheme, and we will give an informal
analysis of the scheme later:

• [An eviction algorithm] Upon every data access, we choose at random 2
buckets in every level of the tree for eviction (for the root level, pick one
bucket). If a bucket is chosen for eviction, we will pop an arbitrary block
(if one exists) from the bucket, and write the block to one of its children.

Note that depending on the chosen block’s designated path, there is only one
child where the block can legitimately go. We must take precautions to hide
where this block is going: Thus for the remaining child that does not receive a
block, we can perform a “dummy” eviction. Additionally, if the bucket chosen
for eviction is empty (does not contain any real blocks), then we make a dummy
eviction for both children — this way we avoid leaking the information that the
chosen bucket is empty.

More specifically, to write an intended block to a child bucket, we sequen-
tially scan through the child bucket. If the slot is occupied with a real block, we
simply write the block back. If the slot is empty, we write the intended block
into that slot. A dummy eviction therefore is basically reading every block
sequentially and writing the original contents back.

59

So far, we have not argued why any bucket that receives a block always has
space for this block — we will give an informal analysis later to show that this
is indeed the case.

6.4.4 Algorithm pseudo-code

We present the algorithm’s pseudo-code in Algorithms 6.2 and 6.3.

Algorithm 6.2. The procedure Access(op, addr, data∗) where op = read or
op = write

Assume: Each block is of the form (addr, data, l) where l denotes the
block’s current designated path.

1: Let l∗ be a random value from 1 to N . Assign l ← position[addr],
position[addr]← l∗.

2: for each bucket from leaf l to root do
3: Scan bucket, and if (addr, data0,) ∈ bucket then let data∗ ← data0 and

remove this block from bucket.
4: end for
5: if op = read then add (addr, data∗, l∗) to the root bucket; else add (addr, data, l∗)

to the root bucket.
6: Call the Evict subroutine.
7: return data∗.

Algorithm 6.3. The procedure Evict

1: for each level d from root to the level of leaves −1 do
2: bucket0, bucket1 ← randomly choose 2 distinct buckets in the level d (for

the root level, pick one bucket).
3: for bucket ∈ {bucket0, bucket1} do
4: block := pop a real block from bucket if one exists; else block :=

(⊥,⊥,⊥).
5: for each of the two children of bucket in a fixed order: scan the child

bucket reading and writing every block. If block is real and wants to
go to the child, write block to an empty slot in the child bucket.

6: end for
7: end for

Remark 6.4. Note that in a full-fledged implementation, all blocks are typically
encrypted to hide the contents of the block. Whenever reading and writing back
a block, the block must be re-encrypted prior to being written back. If the
encryption scheme is secure, the server should not be able to tell whether the
block’s content has changed upon seeing the new ciphertext.

6.5 Analysis

We will now discuss why the aforementioned binary-tree ORAM construction
1) preserves obliviousness, and
2) is correct (except with negligible probability).

60

6.5.1 Obliviousness

Obliviousness is easy to see. First, whenever a block is accessed, it is assigned
to a new path and the choice of the new path is kept secret from the server.
So whenever the block is accessed again, the server simply sees a random path
being accessed. Second, the entire eviction process does not depend on the input
requests at all.

6.5.2 Correctness

Correctness is somewhat trickier to argue. As mentioned earlier, to argue cor-
rectness, we must argue why no overflow will ever occur except with negligible
probability — as long as the bucket size Z is set appropriately.

Claim 6.5. Bucket size and overflow probability: If the bucket size Z is super-
logarithmic in N , then over any polynomially many accesses, no bucket overflows
except with negligible in N probability.

Proof. The full proof uses results from queueing theory,25 in particular Burke’s
theorem.26 We will give a heuristic argument that does not require any special-
ized knowledge.

• The root bucket (level 0 of the ORAM tree) receives exactly 1 incoming
block with every access, and it is evicted on every access, so the root
bucket always ends up empty.

• There are N leaf buckets, and N blocks are assigned to them at random.
We leave it as an exercise to check that the probability that more than
(logN)2 blocks are assigned to any one leaf is negligible than N (in other
words: decays faster than Nk, for every k).

• Now consider a bucket, neither root nor leaf, at level i ≥ 1 of the ORAM
tree. A block will enqueue on one out of every 2i accesses, and with
probability 1

2i−1 , the bucket is chosen for eviction.

So for every non-leaf and non-root level of the tree, with every ORAM ac-
cess, the dequeue probability is twice as large as the enqueue probability. This
situation is well-known in queueing theory as the “M/M/1 queue”:

• Every time step, with probability p, an item enqueues;

• Every time step, with probability 2p, an item dequeues if the queue is
non-empty.

Since the bucket is drained (on average) twice as fast as it is filled, we expect
that it is very unlikely for a lot of blocks to accumulate in any one bucket.

25https://en.wikipedia.org/wiki/Queueing theory
26https://en.wikipedia.org/wiki/Burke%27s theorem

61

Indeed, one can prove an exponential bound on the probability that any one
bucket gets too full:

Pr[number of items in queue > R] ≤ exp(Ω(−R)).

Unfortunately, this does not quite finish our analysis of the ORAM tree.
The reason is that the buckets in the ORAM tree are not independent, and
our informal argument above ignored possible dependence between buckets. It
turns out that this gap can be filled using Burke’s theorem. But at this point the
reader should already be convinced that the result is at least quite plausible.

6.6 Binary-tree ORAM: recursion

So far, we have cheated and pretended that the client can store a large posi-
tion map. We now describe how to get rid of this position map. The idea is
simple: Instead of storing the position map on the client side, we simply store
it in a smaller ORAM denoted posORAM1 on the server. The position map of
posORAM1 will then be stored in an even smaller ORAM denoted posORAM2

on the server, and so on. As long as the block size is at least Ω(logN) bits,
every time we recurse, the ORAM’s size reduces by a constant factor; and thus
O(logN) levels of recursion would suffice.

We can thus conclude with the following theorem.

Theorem 6.6 (Binary-tree ORAM27). For any super-constant function α(·),
there is an ORAM scheme that achieves O(α log3 N) cost for each access: each
logical request will translate to O(α log3 N) physical accesses; and moreover, the
client is required to store only O(1) number of blocks.

Note that in the total cost O(α log3 N), an α logN factor comes from the
bucket size; another logN factor comes from the total height of the tree; and
the remaining logN factor comes from the recursion.

6.7 Path ORAM

The design of the above binary-tree ORAM is a little silly: Whenever we visit
a triplet of buckets for eviction, we only evict one block. For this reason, the
bucket size needs to be super-logarithmic to get negligible failure probability.
It turns out that if we instead use a more aggressive eviction algorithm, and
with a more sophisticated proof, the bucket size can be made constant. At this
point, we are ready to introduce an improved version called Path ORAM.

Unlike the above binary-tree ORAM, in Path ORAM, every bucket has con-
stant size (maybe 4 or 5), except the root bucket which is super-logarithmic in
size. Every time we access some path to fetch a block, we also perform eviction
on the same path. In particular, we will rearrange the blocks on the path in the
most aggressive manner possible: We want to move the blocks as close to the leaf
level as possible, but without violating the path invariant. With Path ORAM,

27https://eprint.iacr.org/2011/407.pdf

62

every access operation touches a single path, hence the name Path ORAM. The
cost of each access is O(α log2 N) for an arbitarily small superconstant function
α.

6.7.1 Other applications of ORAM

ORAM promises many potential applications. For instance, in Large Language
Models (LLMs), a commonly used technique is called Retrieval Augmented Gen-
eration (RAG). RAG parses the user’s query and looks up the relevant locations
in a large knowledge base to fetch the relevant entries. If we want to protect the
privacy of users’ queries in LLMs, it is also crucial to hide the access patterns,
and this would be a great application of ORAM.

Besides its usage in secure processors, ORAM is critical for scaling crypto-
graphic multi-party computation (MPC) to big data. Traditional MPC tech-
niques require us to express the desired computation as a circuit. However,
in the real-world, we program assuming the Random Access Machine (RAM)
model where a CPU can dynamically read and write a memory array. Trans-
lating a RAM program to a circuit brute-force would incur a linear (in the
memory size) cost for each memory access! For example, a binary search in a
sorted database requires only logarithmic time on a RAM, but it requires lin-
ear cost when expressed as a circuit. Fortunately, ORAM again comes to our
rescue. There is a line of work on RAM-model MPC, and the idea is that we
first translate the RAM to an Oblivious RAM, and at this point all the memory
accesses are safe to reveal. At this moment, we can use MPC to securely em-
ulate a “secure processor” that performs computation while accessing memory
obliviously.

6.8 ORAM takeaways

1. Oblivious RAM is a system to hide memory access patterns from a server.

2. The server stores encrypted data blocks in a binary tree, and it does not
learn which blocks correspond to which memory items.

3. Every time the ORAM client accesses a block, it writes that block back
to the root.

4. A randomized eviction procedure moves blocks away from the root, so
individual nodes of the tree do not overflow.

63

